- 林轩田机器学习基石 - 学习笔记4 - 机器学习的可行性
Spareribs
@[TOC]一LearningisImpossible首先,考虑这样一个例子,如下图所示,有3个label为-1的九宫格和3个label为+1的九宫格。根据这6个样本,提取相应label下的特征,预测右边九宫格是属于-1还是+1?结果是,如果依据对称性,我们会把它归为+1;如果依据九宫格左上角是否是黑色,我们会把它归为-1。除此之外,还有根据其它不同特征进行分类,得到不同结果的情况。而且,这些分类
- 机器为什么能学习(上)
ringotc
本篇文章是台湾大学《机器学习基石上》的课程笔记。以PLA算法为例,推导证明机器学习的可行性。问题概述机器学习在当前发展得很快,我们不由得发问:为什么这种算法是可行的。我们说机器学习算法是可行的,是指它的损失函数值很小。比如在回归问题里,我们的目标是让我们用更为数学化的语言表述这件事情:首先定义一下本文需要用到的数学符号我们让本质上就是要使得足够小且。我们这篇文章需要证明的两个保证机器学习可行的结论
- 林轩田机器学习基石课程笔记1 -The Learing Problem
Spareribs
一什么是机器学习什么是“学习”?学习就是人类通过观察、积累经验,掌握某项技能或能力。就好像我们从小学习识别字母、认识汉字,就是学习的过程。而机器学习(MachineLearning),顾名思义,就是让机器(计算机)也能向人类一样,通过观察大量的数据和训练,发现事物规律,获得某种分析问题、解决问题的能力。在这里插入图片描述什么是“机器学习”?机器学习可以被定义为:Improvingsomeperfo
- 惊为天人,NumPy手写全部主流机器学习模型,代码超3万行
小白学视觉
python神经网络机器学习人工智能深度学习
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达本文转自|深度学习这件小事用NumPy手写所有主流ML模型,普林斯顿博士后DavidBourgin最近开源了一个非常剽悍的项目。超过3万行代码、30多个模型,这也许能打造「最强」的机器学习基石?NumPy作为Python生态中最受欢迎的科学计算包,很多读者已经非常熟悉它了。它为Python提供高效率的多维数组计算,并提供了一系列
- 机器学习基石第九讲:linear regression
Marcovaldo
机器学习机器学习基石笔记机器学习
博客已经迁移至Marcovaldo’sblog(http://marcovaldong.github.io/)机器学习基石第十讲介绍线性回归问题(linearregressionproblem),从这一讲开始课程介绍具体的机器学习算法。后面的大部分内容,博主已经学过,所以笔记可能会简略。LinearRegressionProblem借助信用卡发放的问题来介绍线性回归,不过这一次不再是分类,而是要让
- 机器学习基石课程总结
半亩房顶
前前后后也磨蹭了有一个月左右吧,机器学习基石终于是看完了。其实还有很多东西并不很懂,尤其是好多数学问题,不会的依然很多。但是这个课程我是打算就这么结束了,带着一堆的坑。原因如下:不宜拉长战线。数据问题肯定是需要补的,但是现阶段并不准备在数学上下很多功夫,战线拉得太长只会前支后绌。选择性学习。有些东西其实是暂时不需要甚至不宜学习的。故而暂且放下。当然,需要直面时候不能逃避的。目的性或者说功利性使然。
- 3.3 Types of Learning- Learning with Different Protocol |机器学习基石(林轩田)-学习笔记
努力奋斗的durian
文章原创,最近更新:2018-07-18学习链接:3.3TypesofLearning-LearningwithDifferentProtocol学习参考链接:1、台湾大学林轩田机器学习基石课程学习笔记3--TypesofLearning按照不同的协议,机器学习可以分为三种类型:BatchLearningOnlineActiveLearning1.BatchLearningbatchlearnin
- 1.5 The Leaming Problem-Machine Leaming and other Fields|机器学习基石(林轩田)-学习笔记
努力奋斗的durian
文章原创,最近更新:2018-06-27学习链接:1.5TheLeamingProblem-MachineLeamingandotherFields1.MachineLearningandDataMining(机器学习与数据挖掘)讲完了机器学习完整的流程,下面将一下机器学习与其他相关领域的关系第一个讲的领域就是数据挖掘,数据挖掘与机器学习有什么不一样,如下:机器学习是用资料找出一个假说g,然后跟我
- 机器学习--------考试复习笔记
懒懒的程序媛
机器学习
1.机器学习基石–学习的可行性本文主要是通过Hoeffding不等式证明了当模型的所有hypothesis的个数M为有限个时,样本数目N足够大时,就能够保证泛化误差Eout(h)和训练误差Ein(h)很接近。这时候只要找到一个hypothesis使得Ein(h)很小,那么Eout(h)也会很小,从而达到学习的目的。当然有一个大前提就是训练样本和测试样本必须要在同一分布下产生,否则学习无从谈起。Th
- python机器学习算法实训 - (二) 手写岭回归和lasso回归
印第安老斑鸠啾
机器学习算法机器学习python数据分析数据挖掘
是的,我来更新了。线性模型之间还是很相似的,有了线性回归,其他的也好展开了。理论部分两张图来自林轩田老师的机器学习基石,向同学们推荐一手。岭回归和Lasso回归1.1什么是过拟合如图所示,在数据量不够大的情况下,如果我们使用一个高阶多项式(图中红色曲线所示),例如10阶,对目标函数(蓝色曲线)进行拟合。拟合曲线波动很大,虽然Ein很小,但是Eout很大,也就造成了过拟合现象。我们看似在数据集上获得
- 收集一些有用的网址
Sundw_RUC
1.吴恩达深度学习课后作业汇总2.机器学习基石课后练习汇总3.sublimetext主题生成器持续更新
- 林轩田机器学习基石课程笔记3 - 机器学习类型
Spareribs
上节课我们主要介绍了解决线性分类问题的一个简单的方法:PLA。PLA能够在平面中选择一条直线将样本数据完全正确分类。而对于线性不可分的情况,可以使用PocketAlgorithm来处理。本节课将主要介绍一下机器学习有哪些种类,并进行归纳。主要的视频讲解:林轩田机器学习基石P10林轩田机器学习基石P11林轩田机器学习基石P12林轩田机器学习基石P13一LearningwithDifferentOut
- 机器学习笔记(5,6)--林轩田机器学习基石课程
数学系的计算机学生
这两个lecture,集中证明了,当我的hepothesis个数看起来有无限多种时,也就是前面讲到的,找一个超平面(直线)做二元划分问题时,超平面(直线)应该有无限多个,那PLA还能否能learning的问题。具体的证明过程不在复述了,提一下我认为最重要的一点:当出现break的时候,就意味着,hepothesisset的个数会是多项式多个,具体是通过动态规划bound住上界的方法。以后等基石看完
- 机器学习技法(二)
宣的写字台
《机器学习技法》是国立台湾大学林轩田讲授的一门课程,课程的上集是《机器学习基石》。相关资源可以在youtube找到,也可在评论区索要云盘链接。本文主要是我学完一遍基石&技法后的笔记梳理,如果存疑请以原课程讲授内容为准,欢迎讨论~[注]本文仅适用于帮助复习,不适用于代替视频课程。技法分为3个部分,分别为●核模型:嵌入大量特征(6小节)●融合模型:融合预测性特征(5小节)●抽取模型:提取隐性特征(4小
- 《机器学习基石前四章复习》
圈圈圈小明
机器学习人工智能
【引言】训练样本D和最终测试h的样本都是来自同一个数据分布,这是机器能够学习的前提。另外,训练样本D应该足够大,且hypothesisset的个数是有限的,这样根据霍夫丁不等式,才不会出现BadData,保证Ein≈Eout,即有很好的泛化能力。同时,通过训练,得到使Ein最小的h,作为模型最终的矩g,g接近于目标函数。这里,我们总结一下前四节课的主要内容:第一节课,我们介绍了机器学习的定义,目标
- 机器学习
南_橘子猪
1.白板推导系列,up主shuhuai008的个人空间-哔哩哔哩(゜-゜)つロ乾杯~Bilibili2.up主,主要是机器学习的数学推导GRNovmbrain的个人空间-哔哩哔哩(゜-゜)つロ乾杯~Bilibiliup主,陆小亮,读书笔记视频>陆小亮的个人空间_哔哩哔哩_Bilibili林轩田>林轩田机器学习基石(国语)_哔哩哔哩_bilibili3.覃秉丰up主,不仅讲机器学习的算法基础,项目实
- 4-3 Connection to Learning&4-4 Connection to Real Learning|机器学习基石(林轩田)-学习笔记
努力奋斗的durian
文章原创,最近更新:2018-07-25学习链接:4-3ConnectiontoLearning4-4ConnectiontoRealLearning学习参考链接:1、台湾大学林轩田机器学习基石课程学习笔记4--FeasibilityofLearning2、《机器学习基石》学习笔记1.ConnectiontoLearning那么如何通过抽弹珠这个例子跟我们的Learning相联系呢?下面,我们将罐
- 林轩田机器学习基石课程笔记2 - 学习回答Yes/No
Spareribs
上节课,我们主要简述了机器学习的定义及其重要性,并用流程图的形式介绍了机器学习的整个过程:根据模型H,使用演算法,在训练样本上进行训练,得到最好的,其对应的就是我们最后需要的机器学习的模型函数,一般接近于目标函数。本节课将继续深入探讨机器学习问题,介绍感知机Perceptron模型,并推导课程的第一个机器学习算法:。主要的视频讲解:林轩田机器学习基石P6林轩田机器学习基石P7林轩田机器学习基石P8
- 机器学习笔记(2-4)--林轩田机器学习基石课程
数学系的计算机学生
Non-SeparateData当我们不知道数据集是否线性可分时,我们采用贪心的算法,构建modifiedPLA.ModifiedPLA:和普通的PLA不同的是,它在选点时采用随机的方法,并且采用贪心的思想,保存当前最好的w_t.好不好的标准在于造成的错误点数是否更少。直到运行时间足够久后才停止算法。
- 林轩田-机器学习基石-课程笔记1
小T数据站
关于learninglearning:通过观察获取技能ML:通过计算数据获得技能learning&ML什么时候使用机器学习存在一些潜在的模型可以被学习但规则不容易用程式写出来有关于这些模型的资料机器学习流程f:是真实存在的模型,但我们不知道D:是用来学习的训练集A:是学习用到的算法H:是学习到的模型的假设g:是学习到的模型机器学习流程图与机器学习相关的领域数据挖掘:与机器学习难分难解人工智能:机器
- 【机器学习基石】1-1,1-2,1-3 课程引导&机器学习适用场景
茹忆小玉儿
Lec1-1引导机器学习是理论和方法结合的一门学问。理论(道)机器学习方法的假设、推论、结论、作用。是前辈设计的漂亮数学及算法。缺点:可能会让你觉得不够实用。方法(术)机器学习不缺方法。每天都有几十几百个新的方法在产生。缺点:若只是快速学使用方法,招数虽多,临阵时可能不知道如何妥善选择和使用方法。课程设置:从基础切入哲学:机器学习的思想数学:工具算法:设计和使用学会这些,把机器学习变成你的工具,而
- 林轩田机器学习基石课程笔记2 - 知识点补充2
Spareribs
详细笔记查看林轩田机器学习基石课程笔记2-学习回答Yes/No问题在解释GuaranteeofPLA这个问题过程中,提及到了3个内容的推导:内积越大,那表示是在接近目标权重但是内积更大,可能是向量长度更大了,不一定是向量间角度更小的增长被限制了,与向量长度不会差别太大详细说明问题1:内积越大,那表示是在接近目标权重首先有2个网站解释内积是什么向量点乘,叉乘为什么两个向量的点积越大,表明两者越相似?
- 用 NumPy 手写 30 个主流机器学习算法,GitHub 9K 星,全都开源了!
视学算法
python机器学习人工智能深度学习神经网络
转自|机器之心参与|思源、一鸣、张倩用NumPy手写所有主流ML模型,普林斯顿博士后DavidBourgin最近开源了一个非常剽悍的项目。超过3万行代码、30多个模型,这也许能打造「最强」的机器学习基石?NumPy作为Python生态中最受欢迎的科学计算包,很多读者已经非常熟悉它了。它为Python提供高效率的多维数组计算,并提供了一系列高等数学函数,我们可以快速搭建模型的整个计算流程。毫不负责任
- 机器学习笔记(1)--林轩田机器学习基石课程
数学系的计算机学生
MachineLearningandotherField机器学习和数据挖掘:机器学习是通过数据训练,借助设计的机器学习演算法,从众多的假说中,找到一个最接近最优映射关系f的过程。机器学习的模型就是机器学习演算法加上假设集。数据挖掘是从众多数据中,找到、挖掘出自己感兴趣的某个点。当你感兴趣的这个点正好是机器学习所要寻找的映射关系g的时候,数据挖掘就成了机器学习。机器学习和人工智能:人工智能是让机器做
- 机器学习笔记(2-3)--林轩田机器学习基石课程
数学系的计算机学生
GuranteeofPLA这一小节,老师解决了我上一节中遗留的问题。首先,只有当数据集data是线性可分的时候,才存在f超平面,将空间没有错误地划分成两块。所以,PLA才能输出一个可行解g。其次,证明PLA可以在有限步输出g分为三部分:证明w_f·w_{t+1}>w_f·w_{t}(其中w_f是最优解f对应的权向量):这一证明意味着,经过不断的修正,w_t会变得越来越接近理想的w_f。证明w_{t
- 机器学习基石第一次作业
ThomasYoungK
coursera林轩田的《机器学习基石》很有意思,我把一些编程作业总结在这里,参考了macJiang的答案:https://blog.csdn.net/a1015553840/article/details/51085129:作业115-17是naivepla(perceptronlearningalgorithm),算法如下:初始化wrepeat{1.寻找w(t)的下一个错误分类点(x,y)(即
- 机器学习基石第六节
半亩房顶
TheoryofGeneralization本章没怎么看懂,暂时先跳过,回头再来看,暂时看的一篇笔记,大体有些了解了,记住了一些推导和结论。Poly(N)关于参数N的特征多项式转自http://www.cnblogs.com/HappyAngel/p/3622333.html十分感谢这位前辈,私自转载以备留存,请见谅上一节课,我们主要探讨了当M的数值大小对机器学习的影响。如果M很大,那么就不能保证
- 【台大林轩田《机器学习基石》笔记】Lecture 10——Logistic Regression
T1en
机器学习机器学习算法logisticregression逻辑回归
文章目录Lecture10:LogisticRegressionLogisticRegressionProblemLogisticRegressionErrorGradientofLogisticRegressionErrorGradientDescentLecture10:LogisticRegressionLogisticRegressionProblem如果我们想从患者的各种身体信息来推断其
- 机器学习之多元分类(机器学习基石)
N-Paradigm
MachineLearning机器学习数据科学家之路多元分类机器学习多元分类机器学习基石
一个案例如上图所示我们要使用一些线性模型来分割这四种不同的图案,利用以前学过的二元分类我们可以将某一个种类分别从整体中分离出来。比如将图通是方块和不是方块的做二元分类,是三角形的和不是三角形的进行分类等等,然后我们得到下图:问题的出现如上图所示我们在单独的分割中可以分别将我们想要的目标图案分割出来,但是我们将这些图标片综合起来看得到下图:在图中带有标号的区域就是公共区域,在公共区域内的判断是矛盾的
- 机器学习方法的分类——(机器学习基石3)
Lxs_
机器学习机器学习
这周学习的主要是一些理论知识,介绍机器学习的不同学习方法。不同的分类方式可以得出不同的学习类型,下面是总体的四种分类方式:1.按照不同的输出空间Y分类2.按照不同的数据标签yn分类3.按照不同得到目标函数的方式分类4.按照不同的输入空间X分类(1)按照不同的输出空间Y分类这个问题林老师列出了三种学习方式,分别是分类问题,回归问题,结构标记问题。之前的PLA是一种简单的二元分类问题,多元分类的话就是
- Maven
Array_06
eclipsejdkmaven
Maven
Maven是基于项目对象模型(POM), 信息来管理项目的构建,报告和文档的软件项目管理工具。
Maven 除了以程序构建能力为特色之外,还提供高级项目管理工具。由于 Maven 的缺省构建规则有较高的可重用性,所以常常用两三行 Maven 构建脚本就可以构建简单的项目。由于 Maven 的面向项目的方法,许多 Apache Jakarta 项目发文时使用 Maven,而且公司
- ibatis的queyrForList和queryForMap区别
bijian1013
javaibatis
一.说明
iBatis的返回值参数类型也有种:resultMap与resultClass,这两种类型的选择可以用两句话说明之:
1.当结果集列名和类的属性名完全相对应的时候,则可直接用resultClass直接指定查询结果类
- LeetCode[位运算] - #191 计算汉明权重
Cwind
java位运算LeetCodeAlgorithm题解
原题链接:#191 Number of 1 Bits
要求:
写一个函数,以一个无符号整数为参数,返回其汉明权重。例如,‘11’的二进制表示为'00000000000000000000000000001011', 故函数应当返回3。
汉明权重:指一个字符串中非零字符的个数;对于二进制串,即其中‘1’的个数。
难度:简单
分析:
将十进制参数转换为二进制,然后计算其中1的个数即可。
“
- 浅谈java类与对象
15700786134
java
java是一门面向对象的编程语言,类与对象是其最基本的概念。所谓对象,就是一个个具体的物体,一个人,一台电脑,都是对象。而类,就是对象的一种抽象,是多个对象具有的共性的一种集合,其中包含了属性与方法,就是属于该类的对象所具有的共性。当一个类创建了对象,这个对象就拥有了该类全部的属性,方法。相比于结构化的编程思路,面向对象更适用于人的思维
- linux下双网卡同一个IP
被触发
linux
转自:
http://q2482696735.blog.163.com/blog/static/250606077201569029441/
由于需要一台机器有两个网卡,开始时设置在同一个网段的IP,发现数据总是从一个网卡发出,而另一个网卡上没有数据流动。网上找了下,发现相同的问题不少:
一、
关于双网卡设置同一网段IP然后连接交换机的时候出现的奇怪现象。当时没有怎么思考、以为是生成树
- 安卓按主页键隐藏程序之后无法再次打开
肆无忌惮_
安卓
遇到一个奇怪的问题,当SplashActivity跳转到MainActivity之后,按主页键,再去打开程序,程序没法再打开(闪一下),结束任务再开也是这样,只能卸载了再重装。而且每次在Log里都打印了这句话"进入主程序"。后来发现是必须跳转之后再finish掉SplashActivity
本来代码:
// 销毁这个Activity
fin
- 通过cookie保存并读取用户登录信息实例
知了ing
JavaScripthtml
通过cookie的getCookies()方法可获取所有cookie对象的集合;通过getName()方法可以获取指定的名称的cookie;通过getValue()方法获取到cookie对象的值。另外,将一个cookie对象发送到客户端,使用response对象的addCookie()方法。
下面通过cookie保存并读取用户登录信息的例子加深一下理解。
(1)创建index.jsp文件。在改
- JAVA 对象池
矮蛋蛋
javaObjectPool
原文地址:
http://www.blogjava.net/baoyaer/articles/218460.html
Jakarta对象池
☆为什么使用对象池
恰当地使用对象池化技术,可以有效地减少对象生成和初始化时的消耗,提高系统的运行效率。Jakarta Commons Pool组件提供了一整套用于实现对象池化
- ArrayList根据条件+for循环批量删除的方法
alleni123
java
场景如下:
ArrayList<Obj> list
Obj-> createTime, sid.
现在要根据obj的createTime来进行定期清理。(释放内存)
-------------------------
首先想到的方法就是
for(Obj o:list){
if(o.createTime-currentT>xxx){
- 阿里巴巴“耕地宝”大战各种宝
百合不是茶
平台战略
“耕地保”平台是阿里巴巴和安徽农民共同推出的一个 “首个互联网定制私人农场”,“耕地宝”由阿里巴巴投入一亿 ,主要是用来进行农业方面,将农民手中的散地集中起来 不仅加大农民集体在土地上面的话语权,还增加了土地的流通与 利用率,提高了土地的产量,有利于大规模的产业化的高科技农业的 发展,阿里在农业上的探索将会引起新一轮的产业调整,但是集体化之后农民的个体的话语权 将更少,国家应出台相应的法律法规保护
- Spring注入有继承关系的类(1)
bijian1013
javaspring
一个类一个类的注入
1.AClass类
package com.bijian.spring.test2;
public class AClass {
String a;
String b;
public String getA() {
return a;
}
public void setA(Strin
- 30岁转型期你能否成为成功人士
bijian1013
成功
很多人由于年轻时走了弯路,到了30岁一事无成,这样的例子大有人在。但同样也有一些人,整个职业生涯都发展得很优秀,到了30岁已经成为职场的精英阶层。由于做猎头的原因,我们接触很多30岁左右的经理人,发现他们在职业发展道路上往往有很多致命的问题。在30岁之前,他们的职业生涯表现很优秀,但从30岁到40岁这一段,很多人
- [Velocity三]基于Servlet+Velocity的web应用
bit1129
velocity
什么是VelocityViewServlet
使用org.apache.velocity.tools.view.VelocityViewServlet可以将Velocity集成到基于Servlet的web应用中,以Servlet+Velocity的方式实现web应用
Servlet + Velocity的一般步骤
1.自定义Servlet,实现VelocityViewServl
- 【Kafka十二】关于Kafka是一个Commit Log Service
bit1129
service
Kafka is a distributed, partitioned, replicated commit log service.这里的commit log如何理解?
A message is considered "committed" when all in sync replicas for that partition have applied i
- NGINX + LUA实现复杂的控制
ronin47
lua nginx 控制
安装lua_nginx_module 模块
lua_nginx_module 可以一步步的安装,也可以直接用淘宝的OpenResty
Centos和debian的安装就简单了。。
这里说下freebsd的安装:
fetch http://www.lua.org/ftp/lua-5.1.4.tar.gz
tar zxvf lua-5.1.4.tar.gz
cd lua-5.1.4
ma
- java-14.输入一个已经按升序排序过的数组和一个数字, 在数组中查找两个数,使得它们的和正好是输入的那个数字
bylijinnan
java
public class TwoElementEqualSum {
/**
* 第 14 题:
题目:输入一个已经按升序排序过的数组和一个数字,
在数组中查找两个数,使得它们的和正好是输入的那个数字。
要求时间复杂度是 O(n) 。如果有多对数字的和等于输入的数字,输出任意一对即可。
例如输入数组 1 、 2 、 4 、 7 、 11 、 15 和数字 15 。由于
- Netty源码学习-HttpChunkAggregator-HttpRequestEncoder-HttpResponseDecoder
bylijinnan
javanetty
今天看Netty如何实现一个Http Server
org.jboss.netty.example.http.file.HttpStaticFileServerPipelineFactory:
pipeline.addLast("decoder", new HttpRequestDecoder());
pipeline.addLast(&quo
- java敏感词过虑-基于多叉树原理
cngolon
违禁词过虑替换违禁词敏感词过虑多叉树
基于多叉树的敏感词、关键词过滤的工具包,用于java中的敏感词过滤
1、工具包自带敏感词词库,第一次调用时读入词库,故第一次调用时间可能较长,在类加载后普通pc机上html过滤5000字在80毫秒左右,纯文本35毫秒左右。
2、如需自定义词库,将jar包考入WEB-INF工程的lib目录,在WEB-INF/classes目录下建一个
utf-8的words.dict文本文件,
- 多线程知识
cuishikuan
多线程
T1,T2,T3三个线程工作顺序,按照T1,T2,T3依次进行
public class T1 implements Runnable{
@Override
 
- spring整合activemq
dalan_123
java spring jms
整合spring和activemq需要搞清楚如下的东东1、ConnectionFactory分: a、spring管理连接到activemq服务器的管理ConnectionFactory也即是所谓产生到jms服务器的链接 b、真正产生到JMS服务器链接的ConnectionFactory还得
- MySQL时间字段究竟使用INT还是DateTime?
dcj3sjt126com
mysql
环境:Windows XPPHP Version 5.2.9MySQL Server 5.1
第一步、创建一个表date_test(非定长、int时间)
CREATE TABLE `test`.`date_test` (`id` INT NOT NULL AUTO_INCREMENT ,`start_time` INT NOT NULL ,`some_content`
- Parcel: unable to marshal value
dcj3sjt126com
marshal
在两个activity直接传递List<xxInfo>时,出现Parcel: unable to marshal value异常。 在MainActivity页面(MainActivity页面向NextActivity页面传递一个List<xxInfo>): Intent intent = new Intent(this, Next
- linux进程的查看上(ps)
eksliang
linux pslinux ps -llinux ps aux
ps:将某个时间点的进程运行情况选取下来
转载请出自出处:http://eksliang.iteye.com/admin/blogs/2119469
http://eksliang.iteye.com
ps 这个命令的man page 不是很好查阅,因为很多不同的Unix都使用这儿ps来查阅进程的状态,为了要符合不同版本的需求,所以这个
- 为什么第三方应用能早于System的app启动
gqdy365
System
Android应用的启动顺序网上有一大堆资料可以查阅了,这里就不细述了,这里不阐述ROM启动还有bootloader,软件启动的大致流程应该是启动kernel -> 运行servicemanager 把一些native的服务用命令启动起来(包括wifi, power, rild, surfaceflinger, mediaserver等等)-> 启动Dalivk中的第一个进程Zygot
- App Framework发送JSONP请求(3)
hw1287789687
jsonp跨域请求发送jsonpajax请求越狱请求
App Framework 中如何发送JSONP请求呢?
使用jsonp,详情请参考:http://json-p.org/
如何发送Ajax请求呢?
(1)登录
/***
* 会员登录
* @param username
* @param password
*/
var user_login=function(username,password){
// aler
- 发福利,整理了一份关于“资源汇总”的汇总
justjavac
资源
觉得有用的话,可以去github关注:https://github.com/justjavac/awesome-awesomeness-zh_CN 通用
free-programming-books-zh_CN 免费的计算机编程类中文书籍
精彩博客集合 hacke2/hacke2.github.io#2
ResumeSample 程序员简历
- 用 Java 技术创建 RESTful Web 服务
macroli
java编程WebREST
转载:http://www.ibm.com/developerworks/cn/web/wa-jaxrs/
JAX-RS (JSR-311) 【 Java API for RESTful Web Services 】是一种 Java™ API,可使 Java Restful 服务的开发变得迅速而轻松。这个 API 提供了一种基于注释的模型来描述分布式资源。注释被用来提供资源的位
- CentOS6.5-x86_64位下oracle11g的安装详细步骤及注意事项
超声波
oraclelinux
前言:
这两天项目要上线了,由我负责往服务器部署整个项目,因此首先要往服务器安装oracle,服务器本身是CentOS6.5的64位系统,安装的数据库版本是11g,在整个的安装过程中碰到很多的坑,不过最后还是通过各种途径解决并成功装上了。转别写篇博客来记录完整的安装过程以及在整个过程中的注意事项。希望对以后那些刚刚接触的菜鸟们能起到一定的帮助作用。
安装过程中可能遇到的问题(注
- HttpClient 4.3 设置keeplive 和 timeout 的方法
supben
httpclient
ConnectionKeepAliveStrategy kaStrategy = new DefaultConnectionKeepAliveStrategy() {
@Override
public long getKeepAliveDuration(HttpResponse response, HttpContext context) {
long keepAlive
- Spring 4.2新特性-@Import注解的升级
wiselyman
spring 4
3.1 @Import
@Import注解在4.2之前只支持导入配置类
在4.2,@Import注解支持导入普通的java类,并将其声明成一个bean
3.2 示例
演示java类
package com.wisely.spring4_2.imp;
public class DemoService {
public void doSomethin