数据结构---复杂度


复杂度1 最大子列和问题   (20分)

给定KKK个整数组成的序列{N1N_1N1,N2N_2N2, ..., NKN_KNK },“连续子列”被定义为{ NiN_iNi,Ni+1N_{i+1}Ni+1, ..., NjN_jNj },其中 1≤i≤j≤K1 \le i \le j \le K1ijK。“最大子列和”则被定义为所有连续子列元素的和中最大者。例如给定序列{ -2, 11, -4, 13, -5, -2 },其连续子列{ 11, -4, 13 }有最大的和20。现要求你编写程序,计算给定整数序列的最大子列和。

本题旨在测试各种不同的算法在各种数据情况下的表现。各组测试数据特点如下:

  • 数据1:与样例等价,测试基本正确性;
  • 数据2:102个随机整数;
  • 数据3:103个随机整数;
  • 数据4:104个随机整数;
  • 数据5:105个随机整数;

输入格式:

输入第1行给出正整数KKK (≤100000\le 100000100000);第2行给出KKK个整数,其间以空格分隔。

输出格式:

在一行中输出最大子列和。如果序列中所有整数皆为负数,则输出0。

输入样例:

6
-2 11 -4 13 -5 -2

输出样例:

20

解题思路:

某一序列从 i 开始至 j 结束的求和结果为sum(sum > 0), 如果sum + x小于零,则序列从x后一个元素开始累加;如果sum + x大于零,则与Max比较,如果比Max大,则将sum赋值给Max。这样始终保证sum的和是大于零,并且只要遍历一边,即可得到最大值,时间复杂度为O(n)。

数据结构---复杂度_第1张图片

提交代码

编译器:g++

#include 
using namespace std;
int main()
{
    int n;
    int num;
    long long Max = 0, sum = 0;
    cin>>n;
    for(int i = 0; i < n; ++i)
    {
        cin>>num;
        sum += num;
        if(Max < sum) Max = sum;
        if(sum < 0) sum = 0;
    }
    cout<
复杂度2 Maximum Subsequence Sum   (25分)

Given a sequence of KKK integers { N1N_1N1,N2N_2N2, ..., NKN_KNK }. A continuous subsequence is defined to be { NiN_iNi,Ni+1N_{i+1}Ni+1, ..., NjN_jNj } where 1≤i≤j≤K1 \le i \le j \le K1ijK. The Maximum Subsequence is the continuous subsequence which has the largest sum of its elements. For example, given sequence { -2, 11, -4, 13, -5, -2 }, its maximum subsequence is { 11, -4, 13 } with the largest sum being 20.

Now you are supposed to find the largest sum, together with the first and the last numbers of the maximum subsequence.

Input Specification:

Each input file contains one test case. Each case occupies two lines. The first line contains a positive integerKKK (≤10000\le 1000010000). The second line contains KKK numbers, separated by a space.

Output Specification:

For each test case, output in one line the largest sum, together with the first and the last numbers of the maximum subsequence. The numbers must be separated by one space, but there must be no extra space at the end of a line. In case that the maximum subsequence is not unique, output the one with the smallest indices iii and jjj (as shown by the sample case). If all the KKK numbers are negative, then its maximum sum is defined to be 0, and you are supposed to output the first and the last numbers of the whole sequence.

Sample Input:

10
-10 1 2 3 4 -5 -23 3 7 -21

Sample Output:

10 1 4

解题思路:求最大值的思想与上面的相同,注意要输出的是原序列中的起始元素和末尾元素,不是编号。因此需要多做一些判断,确定具体的边界元素。

提交代码

编译器:g++

#include 
using namespace std;
const int MAXN = 10002;
int Num[MAXN] = {0};
int main()
{
    int n;
    int f1 = 0, f2 = 0, end = 0;
    bool nag = true;
    long long Max = 0, sum = 0;
    cin>>n;
    for(int i = 0; i < n; ++i)
    {
        cin>>Num[i];
        sum += Num[i];
        if(Max <= sum)
        {
            nag = false;
            if (sum > Max)
            {
                Max = sum;
                if(f1 != f2) f1 = f2;
                end = i;
            }
            else if(sum == 0) f1 = end = i;
        }
        if(sum < 0) sum = 0, f2 = i+1;
    }
    if(!nag) cout<

你可能感兴趣的:(数据结构)