流式计算的三种框架:Storm、Spark和Flink

我们知道,大数据的计算模式主要分为批量计算(batch computing)、流式计算(stream computing)、交互计算(interactive computing)、图计算(graph computing)等。其中,流式计算和批量计算是两种主要的大数据计算模式,分别适用于不同的大数据应用场景。

目前主流的流式计算框架有Storm、Spark Streaming、Flink三种,其基本原理如下:

Apache Storm

在Storm中,需要先设计一个实时计算结构,我们称之为拓扑(topology)。之后,这个拓扑结构会被提交给集群,其中主节点(master node)负责给工作节点(worker node)分配代码,工作节点负责执行代码。在一个拓扑结构中,包含spout和bolt两种角色。数据在spouts之间传递,这些spouts将数据流以tuple元组的形式发送;而bolt则负责转换数据流。流式计算的三种框架:Storm、Spark和Flink_第1张图片

Apache Spark

Spark Streaming,即核心Spark API的扩展,不像Storm那样一次处理一个数据流。相反,它在处理数据流之前,会按照时间间隔对数据流进行分段切分。Spark针对连续数据流的抽象,我们称为DStream(Discretized Stream)。 DStream是小批处理的RDD(弹性分布式数据集), RDD则是分布式数据集,可以通过任意函数和滑动数据窗口(窗口计算)进行转换,实现并行操作。
流式计算的三种框架:Storm、Spark和Flink_第2张图片

Apache Flink

针对流数据+批数据的计算框架。把批数据看作流数据的一种特例,延迟性较低(毫秒级),且能够保证消息传输不丢失不重复。
流式计算的三种框架:Storm、Spark和Flink_第3张图片
Flink创造性地统一了流处理和批处理,作为流处理看待时输入数据流是无界的,而批处理被作为一种特殊的流处理,只是它的输入数据流被定义为有界的。Flink程序由Stream和Transformation这两个基本构建块组成,其中Stream是一个中间结果数据,而Transformation是一个操作,它对一个或多个输入Stream进行计算处理,输出一个或多个结果Stream。

这三种计算框架的对比如下:

流式计算的三种框架:Storm、Spark和Flink_第4张图片
参考文章:

Streaming Big Data: Storm, Spark and Samza

先荐是一款赋能媒体的AI产品,是集内容上传、内容管理、内容分发、推荐干预、前端渲染于一体的一站式推荐服务可视化平台,支持PC、WAP、APP全平台接入,帮助媒体从0到1搭建推荐系统,显著提升用户活跃、留存、观看时长等重要业务指标,在减少技术成本投入的同时,大幅提高媒体运营效率,从而实现业务智能化转型。目前已服务人民日报、环球网、花瓣网、果壳网、段友、36氪、简书等三百余家内容平台,其中在环球网web端的兴趣推荐项目上,实现了点击率58%的提升,同时访问量和营收分别增长了69%、20%。想要了解更多产品详情,请添加先荐小助手(recsysfc)。

你可能感兴趣的:(大数据,流式计算,技术研讨)