The only difference between easy and hard versions is a number of elements in the array.
You are given an array a consisting of n integers. The value of the i-th element of the array is ai.
You are also given a set of m segments. The j-th segment is [lj;rj], where 1≤lj≤rj≤n.
You can choose some subset of the given set of segments and decrease values on each of the chosen segments by one (independently). For example, if the initial array a=[0,0,0,0,0] and the given segments are [1;3] and [2;4] then you can choose both of them and the array will become b=[−1,−2,−2,−1,0].
You have to choose some subset of the given segments (each segment can be chosen at most once) in such a way that if you apply this subset of segments to the array a and obtain the array b then the valuewill be maximum possible.
Note that you can choose the empty set.
If there are multiple answers, you can print any.
If you are Python programmer, consider using PyPy instead of Python when you submit your code.
Input
The first line of the input contains two integers n and m (1≤n≤105,0≤m≤300) — the length of the array a and the number of segments, respectively.
The second line of the input contains n integers a1,a2,…,an (−106≤ai≤106), where ai is the value of the i-th element of the array a.
The next m lines are contain two integers each. The j-th of them contains two integers lj and rj (1≤lj≤rj≤n), where lj and rj are the ends of the j-th segment.
Output
In the first line of the output print one integer d— the maximum possible value maxi=1nbi−mini=1nbi if b is the array obtained by applying some subset of the given segments to the array a.
In the second line of the output print one integer q (0≤q≤m) — the number of segments you apply.
In the third line print q distinct integers c1,c2,…,cq in any order (1≤ck≤m) — indices of segments you apply to the array a in such a way that the value maxi=1nbi−mini=1nbi of the obtained array b is maximum possible.
If there are multiple answers, you can print any.
Input
5 4
2 -2 3 1 2
1 3
4 5
2 5
1 3
Output
6
2
1 4
Input
5 4
2 -2 3 1 4
3 5
3 4
2 4
2 5
Output
7
2
2 3
Input
1 0
1000000
Output
0
0
Note
In the first example the obtained array b will be [0,−4,1,1,2] so the answer is 6.
In the second example the obtained array b will be [2,−3,1,−1,4] so the answer is 7.
In the third example you cannot do anything so the answer is 0.
#include
using namespace std;
const int maxn = 1e5 + 5;
const int maxm = 305;
int n, m;
int a[maxn], l[maxm], r[maxm], ans[maxn];
vector<int> add[maxn], sub[maxn];
struct node
{
int l, r;
int maxx, minn, lazy;
} tree[maxn << 2];
void push_up(int k)
{
tree[k].maxx = max(tree[k << 1].maxx, tree[k << 1 | 1].maxx);
tree[k].minn = min(tree[k << 1].minn, tree[k << 1 | 1].minn);
}
void push_down(int k)
{
if(tree[k].l != tree[k].r)
{
tree[k << 1].maxx += tree[k].lazy, tree[k << 1].minn += tree[k].lazy;
tree[k << 1 | 1].maxx += tree[k].lazy, tree[k << 1 | 1].minn += tree[k].lazy;
tree[k << 1].lazy += tree[k].lazy;
tree[k << 1 | 1].lazy += tree[k].lazy;
}
tree[k].lazy = 0;
}
void build(int k, int l, int r)
{
tree[k].l = l;
tree[k].r = r;
if(l == r)
{
tree[k].maxx = a[l];
tree[k].minn = a[l];
tree[k].lazy = 0;
return ;
}
int mid = (l + r) >> 1;
build(k << 1, l, mid);
build(k << 1 | 1, mid + 1, r);
push_up(k);
}
void update(int k, int l, int r, int x)
{
if(tree[k].lazy)
push_down(k);
tree[k].maxx += x;
tree[k].minn += x;
if(tree[k].l == l && tree[k].r == r)
{
tree[k].lazy += x;
return ;
}
int mid = (tree[k].l + tree[k].r) >> 1;
if(r <= mid)
update(k << 1, l, r, x);
else if(l > mid)
update(k << 1 | 1, l, r, x);
else
{
update(k << 1, l, mid, x);
update(k << 1 | 1, mid + 1, r, x);
}
push_up(k);
}
int query_max(int k, int l, int r)
{
int maxx;
if(tree[k].lazy)
push_down(k);
if(tree[k].l == l && tree[k].r == r)
return tree[k].maxx;
int mid = (tree[k].l + tree[k].r) >> 1;
if(r <= mid)
maxx = query_max(k << 1, l, r);
else if(l > mid)
maxx = query_max(k << 1 | 1, l, r);
else
maxx = max(query_max(k << 1, l, mid), query_max(k << 1 | 1, mid + 1, r));
return maxx;
}
int query_min(int k, int l, int r)
{
int minn;
if(tree[k].lazy)
push_down(k);
if(tree[k].l == l && tree[k].r == r)
return tree[k].minn;
int mid = (tree[k].l + tree[k].r) >> 1;
if(r <= mid)
minn = query_min(k << 1, l, r);
else if(l > mid)
minn = query_min(k << 1 | 1, l, r);
else
minn = min(query_min(k << 1, l, mid), query_min(k << 1 | 1, mid + 1, r));
return minn;
}
int main()
{
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i++)
scanf("%d", &a[i]);
for(int i = 1; i <= m; i++)
{
scanf("%d%d", &l[i], &r[i]);
//统计区间
sub[ l[i] ].push_back(i);
add[ r[i] ].push_back(i);
}
//构造线段树
build(1, 1, n);
int d = -1, p;//d记录最大极差,p记录最小值的位置
for(int i = 1; i <= n; i++)//枚举最小值出现的位置
{
for(int j = 0; j < add[i - 1].size(); j++)//消除包含i-1,不包含i区间的影响
{
int id = add[i - 1][j];//注意这里是i-1
update(1, l[id], r[id], 1);
}
for(int j = 0; j < sub[i].size(); j++)//添加包含i,不包含i-1区间的影响
{
int id = sub[i][j];
update(1, l[id], r[id], -1);
}
//查询极差 注意这里虽然知道最小值是a[i],但是由于使用了线段树,有lazy标记,标记可能没有更新到最底层,所以不能直接使用a[i]。
int det = query_max(1, 1, n) - query_min(1, 1, n);
if(det > d)
{
d = det;
p = i;
}
}
printf("%d\n", d);
int t = 0;
for(int i = 1; i <= m; i++)//统计区间
{
if(l[i] <= p && p <= r[i])
ans[t++] = i;
}
printf("%d\n", t);
for(int i = 0; i < t; i++)
{
if(i != 0)
printf(" ");
printf("%d", ans[i]);
}
printf("\n");
return 0;
}