求最大公约数和最小公倍数的常用解法

对于m,n两数求最大公约数的算法:

(1)辗转相除法

1.c=m%n。

2.若c=0,则n就是两数的最大公约数。

3.若c!=0,则m=n,n=c然后重新执行1。

代码实现过程如下:

#include
int sove(int x,int y)
{
	return x%y==0?y:sove(y,x%y);
}
int main()
{
	int m,n,c;
	scanf("%d %d",&m,&n);
	int w=sove(m,n);
	printf("%d\n",w);
	return 0;
} 
(2)相减法

1.若m>n,则m=m-n。

2.若m

3.若m=n,则m或n就是最大公因数。

4.若在m!=n的情况下回去执行1。

代码实现过程如下:

#include
int sove(int x,int y)
{
	int answer;
	while(x!=y)
	{
		if(x>y)
		x=x-y;
		else
		y=y-x;
	}
	answer=x;
	return answer;
}
int main()
{
	int m,n,c;
	scanf("%d %d",&m,&n);
	int w=sove(m,n);
	printf("%d\n",w);
	return 0;
} 
(3)穷举法

1.找出m,n中较小的数。

2.i从m,n中较小的一个数开始到1进行循环如果m,n两数均能整除i则i即为最大公因数。

代码实现过程如下:

#include
int sove(int x,int y)
{
	int answer;
	if(x>y)
	{
		int t=x;
		x=y;
		y=t;
	}
	for(int i=x;i>=1;i--)
	{
		if(x%i==0&&y%i==0)
		{
			answer=i;
			break;
		}
	}
	return answer;
}
int main()
{
	int m,n,c;
	scanf("%d %d",&m,&n);
	int w=sove(m,n);
	printf("%d\n",w);
	return 0;
} 


对于m,n两数求最小公倍数的算法

最小公倍数=m*n/最大公因数



你可能感兴趣的:(求最大公约数和最小公倍数的常用解法)