- 云原生--微服务、CICD、SaaS、PaaS、IaaS
青秋.
云原生docker云原生微服务kubernetesserverlessservice_meshci/cd
往期推荐浅学React和JSX-CSDN博客一文搞懂大数据流式计算引擎Flink【万字详解,史上最全】-CSDN博客一文入门大数据准流式计算引擎Spark【万字详解,全网最新】_大数据spark-CSDN博客目录1.云原生概念和特点2.常见云模式3.云对外提供服务的架构模式3.1IaaS(Infrastructure-as-a-Service)3.2PaaS(Platform-as-a-Servi
- Python 解析 Kafka 消息队列的高吞吐架构
```htmlPython解析Kafka消息队列的高吞吐架构Python解析Kafka消息队列的高吞吐架构Kafka是一个分布式、高吞吐量的消息队列系统,广泛应用于实时数据处理和流式计算场景。Python作为一种灵活且易于使用的编程语言,在与Kafka集成时提供了多种库支持,例如kafka-python和confluent-kafka。本文将探讨如何使用Python构建高效的Kafka消息队列应用
- kafka-day01 初识kafka
一枚小兵
kafkakafkalsrconsumerleaderfollower
1.介绍:消息系统:kafka作为一款消息中间件系统,具备有系统解耦,冗余存储,流量控制,缓冲,异步通讯,扩展性及可恢复性等功能;可以保障分区消息的顺序性及回溯消费功能存储系统:kafka消息持久化到磁盘,较其他内存存储系统而言,有效的降低了数据丢失的风险;kafka提供了多副本机制流数据处理平台:kafka可作为流式计算框架的可靠数据来源2.关键词Producer:Consumer:Broker
- 从零开始搭建flink流式计算项目-1项目创建
电脑玩家柒柒
flink大数据java
项目搭建我这里使用的是jdk17,flink版本1.18.1新建maven项目pom.xml4.0.0cn.xyz2022flink-demo11.0-SNAPSHOT1717UTF-81.18.1org.apache.flinkflink-java${flink.version}org.apache.flinkflink-core${flink.version}<dependency
- 基于 Java 的大数据分布式计算在基因编辑数据分析与精准医疗中的应用进展
知识产权13937636601
计算机java分布式计算基因编辑
随着基因测序成本断崖式下降(单人类全基因组低于100)和CRISPR基因编辑技术成熟,全球日均产生超20PB基因数据。传统单机生物信息学工具难以应对海量多组学数据的整合、分析与临床转化。本文将系统阐述**Java技术栈如何构建新一代基因大数据计算中枢**:基于Hadoop+Spark的分布式架构实现千倍加速的基因组比对;通过Flink流式计算引擎支撑CRISPR脱靶效应实时预测;利用ApacheA
- 利用Flink在大数据领域实现实时推荐系统
利用Flink在大数据领域实现实时推荐系统关键词:Flink、实时推荐系统、大数据处理、流式计算、机器学习、用户画像、协同过滤摘要:本文深入探讨如何利用ApacheFlink构建高性能的实时推荐系统。我们将从推荐系统的基本原理出发,详细分析Flink在实时数据处理中的优势,并通过完整的项目案例展示如何实现一个端到端的实时推荐解决方案。文章涵盖核心算法实现、系统架构设计、性能优化策略以及实际应用场景
- 数据分析学习 Day_01
Detachym
sqlhadoopmysqlspark大数据
一、大数据核心概念与典型业务需求实时分析特点:处理短时间内产生的数据流(如日志、交易、传感器数据)。目标:对正在发生的事件进行即时洞察、监控和响应。技术侧重:流式计算框架(如Flink,SparkStreaming,Storm)。批处理/离线分析特点:处理较长时间跨度内积累的海量历史数据(如日/周/月数据)。目标:面向过去,进行周期性(如每日/每周)的统计、汇总、报表生成和深度挖掘。技术侧重:批处
- Kafka教程(一)基础入门:基本概念、安装部署、运维监控、命令行使用
哥们要飞
kafka运维java分布式大数据
Kafka教程(一)基础入门1.基本概念背景领英->Apache分布式、消息发布订阅系统角色存储系统消息系统流处理平台-KafkaStreaming特点高吞吐、低延迟cg消费不同分区可扩展性(热扩展)持久性、可靠性容错性(n-1个replica)高并发(数千个客户端☆)作用削峰填谷(Peakcut)+解耦流式计算:计算系统的前置缓存和输出结果缓存2.安装部署zookeeper集群zoo.cfgse
- 实时风控技术核心:流式计算与动态规则的协同策略
梁宇凡》
系统架构
一、实时风控的核心场景与技术需求移动支付、直播打赏等场景要求风控响应时间压缩至100ms以内,传统批量处理模式(如T+1数据分析)已无法满足需求。实时风控的技术核心在于:毫秒级数据接入、秒级特征计算、动态规则与模型的实时联动。例如,用户在直播中突然发起万元打赏时,系统需实时校验设备环境(是否模拟器登录)、交易行为(是否短时间内高频打赏)、历史画像(过往打赏金额分布),并在交易完成前完成风险拦截。二
- Flink 常用算子详解与最佳实践
北漂老男人
Flinkflink大数据学习方法
Flink常用算子详解与最佳实践ApacheFlink作为新一代流式计算引擎,以其高吞吐、低延迟和强大的状态管理能力,成为大数据实时处理领域的首选。在实际开发中,Flink的各种算子(Operator)构成了数据处理的核心。本文将详细讲解Flink的常用算子,包括其原理、典型应用场景、详细代码示例、优化建议、学习方法及权威参考链接。一、算子分类概览Flink算子大致分为三类:数据源(Source)
- 大数据领域数据服务的实时处理技术探索
大数据洞察
大数据与AI人工智能大数据ai
大数据领域数据服务的实时处理技术探索关键词:大数据、实时处理、流式计算、Lambda架构、Kappa架构、Flink、Kafka摘要:本文深入探讨大数据领域中数据服务的实时处理技术。我们将从基础概念出发,分析实时处理的核心架构和算法原理,并通过实际案例展示如何构建高效的实时数据处理系统。文章将覆盖流式计算框架、消息队列、实时分析技术等关键组件,同时提供实用的开发指南和最佳实践,帮助读者掌握构建实时
- spark读文件忽略第一行_Spark 核心概念与操作
weixin_39569894
spark读文件忽略第一行
spark简介ApacheSpark是新兴的一种快速通用的大规模数据处理引擎。它的优势有三个方面:通用计算引擎能够运行MapReduce、数据挖掘、图运算、流式计算、SQL等多种框架;基于内存数据可缓存在内存中,特别适用于需要迭代多次运算的场景;与Hadoop集成能够直接读写HDFS中的数据,并能运行在YARN之上。Spark是用Scala语言编写的,所提供的API也很好地利用了这门语言的特性,当
- Python, C ++,C 语言开发常规职业技能线上鉴定与评测app
Geeker-2025
pythonc++c语言
以下是针对常规职业技能线上精细鉴定与评测APP的开发方案,结合Python、C++和C的技术特性,构建高效、安全、可扩展的职业技能评估系统:---一、系统架构设计1.技术栈分层模块Python应用场景C++应用场景C应用场景核心算法引擎机器学习模型训练(PyTorch/TensorFlow)高性能评测算法(模板元编程)底层硬件接口(传感器数据采集)实时数据处理流式计算(ApacheBeam)内存数
- Python 解析 Kafka 消息队列的高吞吐架构
未知拾遗
pythonkafka架构
```htmlPython解析Kafka消息队列的高吞吐架构Python解析Kafka消息队列的高吞吐架构Kafka是一个分布式、高吞吐量的消息队列系统,广泛应用于实时数据处理和流式计算场景。Python作为一种灵活且易于使用的编程语言,在与Kafka集成时提供了多种库支持,例如kafka-python和confluent-kafka。本文将探讨如何使用Python构建高效的Kafka消息队列应用
- Kafka+Spark-Streaming实现流式计算(WordCount)
凡心微光
kafkasparkscala大数据算法
Kafka+Spark-Streaming实现流式计算(WordCount)1.所需jar包下载spark-streaming-kafka-0-10_2.12-3.1.1.jar下载spark-token-provider-kafka-0-10_2.12-3.1.1.jar下载将/home/DYY/spark/kafka_2.12-3.0.0/libs/目录下的kafka-clients-3.0.
- SparkStreaming概述
淋一遍下雨天
spark大数据学习
SparkStreaming主要用于流式计算,处理实时数据。DStream是SparkStreaming中的数据抽象模型,表示随着时间推移收到的数据序列。SparkStreaming支持多种数据输入源(如Kafka、Flume、Twitter、TCP套接字等)和数据输出位置(如HDFS、数据库等)。SparkStreaming特点易用性:支持Java、Python、Scala等编程语言,编写实时计
- Python 解析 Kafka 消息队列的高吞吐架构
数据库管理员的恶梦fB
pythonkafka架构
```htmlPython解析Kafka消息队列的高吞吐架构Python解析Kafka消息队列的高吞吐架构Kafka是一个分布式、高吞吐量的消息队列系统,广泛应用于实时数据处理和流式计算场景。Python作为一种灵活且易于使用的编程语言,在与Kafka集成时提供了多种库支持,例如kafka-python和confluent-kafka。本文将探讨如何使用Python构建高效的Kafka消息队列应用
- Flink介绍——实时计算核心论文之Storm论文总结
黄雪超
从0开始学Flinkstorm大数据论文阅读
引入我们通过S4和Storm论文的以下文章,已经对S4和Storm有了较多认识:S4论文详解S4论文总结Storm论文详解本文则会结合这两者的论文内容进行对比总结,去看看为什么Storm能战胜S4成为当时实时处理的顶流。我们知道S4的实时计算模型,是通过抽象出一个叫做PE的单元,然后所有的数据、处理逻辑都是基于PE的,而且整个系统没有Master,是完全对称的架构。而Storm在流式计算上,虽然也
- Spark
薇晶晶
大数据
Spark简介Spark的特点运行速度快:使用DAG执行引擎以支持循环数据流与内存计算容易使用:支持使用Scala、Java、Python和R语言进行编程,可以通过SparkShell进行交互式编程通用性:Spark提供了完整而强大的技术栈,包括SQL查询、流式计算、机器学习和图算法组件运行模式多样:可运行于独立的集群模式中,可运行于Hadoop中,也可运行于AmazonEC2等云环境中,并且可以
- Rust + 时序数据库 TDengine:打造高性能时序数据处理利器
涛思数据(TDengine)
时序数据库rusttdengine
引言:为什么选择TDengine与Rust?TDengine是一款专为物联网、车联网、工业互联网等时序数据场景优化设计的开源时序数据库,支持高并发写入、高效查询及流式计算,通过“一个数据采集点一张表”与“超级表”的概念显著提升性能。Rust作为一门系统级编程语言,近年来在数据库、嵌入式系统、分布式服务等领域迅速崛起,以其内存安全、高性能著称,与TDengine的高效特性天然契合,适合构建高可靠、高
- Flink流式计算系统
xyzkenan
Flink大数据大数据开发
本文将以这些概念为基础,逐一介绍Flink的发展背景、核心概念、时间推理与正确性工具、安装部署、客户端操作、编程API等内容,让开发人员对Flink有较为全面的认识并拥有一些基础操作与编程能力。一、发展背景1.1数据处理架构在流处理器出现之前,数据处理架构主要由批处理器组成,其是对无限数据的有限切分,具有吞吐量大、数据较为准确的特点。然而我们知道,批处理器在时间切分点附近仍然无法保证数据结果的真实
- 时间语义与窗口操作:Flink 流式计算的核心逻辑
小诸葛IT课堂
flink大数据
在实时数据流处理中,时间是最为关键的维度之一。Flink通过灵活的时间语义和丰富的窗口类型,为开发者提供了强大的时间窗口分析能力。本文将深入解析Flink的时间语义机制,并通过实战案例演示如何利用窗口操作实现实时数据聚合。一、Flink时间语义详解1.1三种时间概念1.1.1EventTime(事件时间)定义:事件实际发生的时间,由事件本身携带的时间戳决定应用场景:需要准确反映事件真实顺序的场景(
- 图数据库的易用性—GES与Flink的对接
华为云技术精粹
云计算华为云
数字化时代,业务的实时处理需求越来越迫切,实时预警、实时风控、实时推荐等,Flink作为新一代流批统一的计算引擎,具有独特的天然流式计算特性和更为先进的架构设计的特点,它可以从不同的第三方存储引擎中读取数据,进行处理,然后再写出到另外的存储引擎中。GES拥抱变化,开发了与Flink的对接工具GES-Flink-Connector。GES-Flink-Connector是一款自定义的离线/实时数据同
- 消息中间件 --- Apache Pulsar
johnrui
云计算
使用场景,参考地址:最佳实践|ApachePulsar在拉卡拉的技术实践_开源_ApachePulsar_InfoQ写作社区场景1:流式队列场景2:消息队列:OpenMessaging协议实现(透明层协议)场景3:流式队列:自定义Kafka0.8-Source(Source开发)场景4:流式队列:Function消息过滤(消息过滤)场景5:流式队列:PulsarFlinkConnector流式计算
- Hologres 介绍
黄毛火烧雪下
数据分析
Hologres是阿里云提供的一款实时数据分析平台,它结合了数据仓库(DataWarehouse)和流式计算(StreamProcessing)的优势,专为大规模数据分析和实时数据处理而设计。Hologres基于PostgreSQL构建,提供了高性能的查询处理、强大的数据分析能力,并能够支持海量数据的实时分析。一、Hologres的核心特点和功能:1、基于PostgreSQL构建:Hologres
- docker搭建TDengine环境
时尚IT男
dockertdengine容器
TDengine是涛思数据旗下一款产品开源、云原生的时序数据库(TimeSeriesDatabase),已在2018年8月推出正式商业化版本。TDengine不依赖任何开源或第三方软件,拥有完全自主知识产权,具有高性能、高可靠、可伸缩、零管理、简单易学等技术特点。[1]提供缓存、数据订阅、流式计算等功能,最大程度减少研发和运维的复杂度。TDengine官方文档一.TDengin安装1.拉取TDen
- 2天的Flink Forward Asia 有什么值得关注的点
本文于12.8首发于公众号“狗哥琐话”。系是B站视频的文字稿。有兴趣的同学可以看B站的视频,搜索“抽象狗哥”。11月29号和30号,FlinkForwardAsia在上海举行。这篇文章给大家搞个省流版,聊聊有什么值得关注的点。Flink近2年的一个大动作就是把Flink的场景从流式计算到流式湖仓,主要是依托于ApachePaimon来建设的。流式湖仓和实时数仓是两回事啊。新鲜度上有很大的差别,前者
- Flink提交任务命令执行错误NoSuchMethodError
500佰
Flink线上问题处理方案flink大数据云计算运维
#Flink常见故障#大数据#生产环境真实案例#Flink#流式计算#流批一体#整理#经验总结说明:此篇总结Flink常见故障案例处理方案结合自身经历总结不易+关注+收藏欢迎留言更多Flink案例汇总方案解决方案:Flink业务常见故障多案例解决方案Flink提交任务命令执行错误NoSuchMethodError问题使用flinkrun命令提交任务时报错,报错如下:java.lang.NoSuch
- 使用Flink进行流式图处理
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
使用Flink进行流式图处理1.背景介绍1.1大数据时代的到来随着互联网、物联网和移动互联网的快速发展,数据呈现出爆炸式增长。根据IDC的预测,到2025年,全球数据量将达到175ZB。传统的批处理系统已经无法满足对实时数据处理的需求。因此,流式计算应运而生,成为大数据处理的重要组成部分。1.2流式计算的概念流式计算是一种新兴的数据处理范式,它能够持续不断地处理来自各种数据源的数据流。与传统的批处
- Flink流式计算入门
@Rocky
Flinkflink大数据
什么是流式计算流式计算是一种实时处理和分析大规模数据流的计算方法,其核心思想是将数据视为连续流动的序列,而不是静态存储的数据。与传统的批处理计算不同,流式计算能够在数据生成的同时进行处理,提供及时的结果。核心概念数据流:流式计算中的基本单位,表示一系列动态生成的数据。数据流可以来自传感器、网络请求、用户行为等多种来源。计算流:在数据流上进行的各种计算操作,如过滤、聚合和转换等。这些操作实时进行,并
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文