7.测试hadoop安装成功与否,并跑mapreduce实例

hadoop2.6.5集群安装及mapreduce测试运行
http://blog.csdn.net/fanfanrenrenmi/article/details/54232184


【准备工作】在每一次测试之前,必须把前一次测试完的文件删除掉,具体命令见下:

################################
#在master机器上:

su hadoop  #切换用户
################################

rm -r /home/hadoop/hadoop/*    #删除

mkdir /home/hadoop/hadoop/datanode /home/hadoop/hadoop/namenode /home/hadoop/hadoop/tmp  #创建

chmod -R 777 /home/hadoop/hadoop/datanode /home/hadoop/hadoop/namenode /home/hadoop/hadoop/tmp  #修改权限
################################
ssh slave1


rm -r /home/hadoop/hadoop/*    #删除

mkdir /home/hadoop/hadoop/datanode /home/hadoop/hadoop/namenode /home/hadoop/hadoop/tmp  #创建

chmod -R 777 /home/hadoop/hadoop/datanode /home/hadoop/hadoop/namenode /home/hadoop/hadoop/tmp  #修改权限
#################################
ssh slave2


rm -r /home/hadoop/hadoop/*    #删除

mkdir /home/hadoop/hadoop/datanode /home/hadoop/hadoop/namenode /home/hadoop/hadoop/tmp  #创建

chmod -R 777 /home/hadoop/hadoop/datanode /home/hadoop/hadoop/namenode /home/hadoop/hadoop/tmp  #修改权限

ssh master
################################


=============================================

开 始 测 试

=============================================

(一)

1)格式化 hdfs (在 master 机器上)

    hdfs namenode -format
显示下面内容:
17/08/12 22:13:49 INFO namenode.NameNode: SHUTDOWN_MSG: 
/************************************************************
SHUTDOWN_MSG: Shutting down NameNode at master/192.168.222.134
************************************************************/

2)启动 hdfs (在 master 机器上)

    start-dfs.sh 
显示下面内容:
hadoop@master:~$ start-dfs.sh 
Starting namenodes on [master]
master: starting namenode, logging to /data/hadoop-2.6.5/logs/hadoop-hadoop-namenode-master.out
slave1: starting datanode, logging to /data/hadoop-2.6.5/logs/hadoop-hadoop-datanode-slave1.out
slave2: starting datanode, logging to /data/hadoop-2.6.5/logs/hadoop-hadoop-datanode-slave2.out
Starting secondary namenodes [master]
master: starting secondarynamenode, logging to /data/hadoop-2.6.5/logs/hadoop-hadoop-secondarynamenode-master.out

3)在master机器上jps

hadoop@master:~$ jps   # 3 个
10260 NameNode
10581 Jps
10469 SecondaryNameNode

4)在 slave1 和slave2 上使用jps

hadoop@slave1:~/hadoop$ jps   # 2 个
6688 Jps
6603 DataNode

==================================

hadoop@slave2:~$ jps   # 2 个
6600 DataNode
6682 Jps
解释:jps命令是查看当前启动的节点

    上面说明了在 master 节点上成功启动了NameNode 和 SecondaryNameNode,
在 slave 节点上成功启动了DataNode,也就说明 HDFS 启动成功。

===========

(二)

1)在 master上

start-yarn.sh   #启动 yarn

显示下面内容:
hadoop@master:~$ start-yarn.sh   #启动 yarn
starting yarn daemons
starting resourcemanager, logging to /data/hadoop-2.6.5/logs/yarn-hadoop-resourcemanager-master.out
slave2: nodemanager running as process 6856. Stop it first.
slave1: starting nodemanager, logging to /data/hadoop-2.6.5/logs/yarn-hadoop-nodemanager-slave1.out

2)在master上jps

hadoop@master:~$ jps   # 4 个
10260 NameNode
10469 SecondaryNameNode
10649 ResourceManager
10921 Jps

3)在 slave1 和slave2 上jps

hadoop@slave1:~/hadoop$ jps   # 3 个
6771 NodeManager
6887 Jps
6603 DataNode

=========================================

hadoop@slave2:~$ jps   # 3 个
7057 Jps
6600 DataNode
6856 NodeManager
    上面说明成功启动了 ResourceManager 和 NodeManager,也就
是说 yarn 启动成功。

(三)访问 WebUI

    在 master、slave1 和 slave2 任意一台机器上打开 firefox,然后
输入 http://master:8088/,如果看到如下的图片,就说明我们的 hadoop 集群搭建成功了。

7.测试hadoop安装成功与否,并跑mapreduce实例_第1张图片

(四)测试完成后,用下面命令进行关闭:

    stop-all.sh
显示见下:
hadoop@master:~$ stop-all.sh
This script is Deprecated. Instead use stop-dfs.sh and stop-yarn.sh
Stopping namenodes on [master]
master: stopping namenode
slave1: stopping datanode
slave2: stopping datanode
Stopping secondary namenodes [master]
master: stopping secondarynamenode
stopping yarn daemons
stopping resourcemanager
slave1: stopping nodemanager
slave2: stopping nodemanager
no proxyserver to stop

再用jps分别查看master、slaver1、slave2机器的状态,发现已经关闭。

(五)清理产生的文件

【记得执行下面代码清空上次生成的文件,以免对下次测试造成影响】
################################
#在master机器上:

su hadoop  #切换用户
################################

rm -r /home/hadoop/hadoop/*    #删除

mkdir /home/hadoop/hadoop/datanode /home/hadoop/hadoop/namenode /home/hadoop/hadoop/tmp  #创建

chmod -R 777 /home/hadoop/hadoop/datanode /home/hadoop/hadoop/namenode /home/hadoop/hadoop/tmp  #修改权限
################################
ssh slave1


rm -r /home/hadoop/hadoop/*    #删除

mkdir /home/hadoop/hadoop/datanode /home/hadoop/hadoop/namenode /home/hadoop/hadoop/tmp  #创建

chmod -R 777 /home/hadoop/hadoop/datanode /home/hadoop/hadoop/namenode /home/hadoop/hadoop/tmp  #修改权限
#################################
ssh slave2


rm -r /home/hadoop/hadoop/*    #删除

mkdir /home/hadoop/hadoop/datanode /home/hadoop/hadoop/namenode /home/hadoop/hadoop/tmp  #创建

chmod -R 777 /home/hadoop/hadoop/datanode /home/hadoop/hadoop/namenode /home/hadoop/hadoop/tmp  #修改权限

ssh master
################################

=============================================

应用mapreduce

=============================================

hadoop fs 查看hdfs操作系统命令集合
1.启动hadoop集群 
    start-all.sh

2.创建hdfs目录 
    hadoop fs -mkdir /input

3.上传文件 
    hadoop fs -put /data/hadoop-2.6.5/README.txt /input/

4.修改文件名称 
hadoop fs -mv /input/README.txt /input/readme.txt

5.查看文件 hadoop fs -ls /input 
运行输出情况见下:
hadoop@master:~$ hadoop fs -ls /input 
Found 1 items
-rw-r--r--   3 hadoop supergroup       1366 2017-08-13 19:58 /input/readme.txt

【注解】输出文件夹为output,无需新建,若已存在需删除

6.运行hadoop自带例子 
    hadoop jar /data/hadoop-2.6.5/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.5.jar wordcount /input /output
运行输出情况见下:
hadoop@master:~$ hadoop jar /data/hadoop-2.6.5/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.5.jar wordcount /input /output
17/08/13 20:11:18 INFO client.RMProxy: Connecting to ResourceManager at master/192.168.222.139:8032
17/08/13 20:11:21 INFO input.FileInputFormat: Total input paths to process : 1
17/08/13 20:11:21 INFO mapreduce.JobSubmitter: number of splits:1
17/08/13 20:11:22 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1502625091562_0001
17/08/13 20:11:23 INFO impl.YarnClientImpl: Submitted application application_1502625091562_0001
17/08/13 20:11:23 INFO mapreduce.Job: The url to track the job: http://master:8088/proxy/application_1502625091562_0001/
17/08/13 20:11:23 INFO mapreduce.Job: Running job: job_1502625091562_0001
17/08/13 20:11:45 INFO mapreduce.Job: Job job_1502625091562_0001 running in uber mode : false
17/08/13 20:11:45 INFO mapreduce.Job:  map 0% reduce 0%
17/08/13 20:11:59 INFO mapreduce.Job:  map 100% reduce 0%
17/08/13 20:12:29 INFO mapreduce.Job:  map 100% reduce 100%
17/08/13 20:12:30 INFO mapreduce.Job: Job job_1502625091562_0001 completed successfully
17/08/13 20:12:30 INFO mapreduce.Job: Counters: 49
    File System Counters
        FILE: Number of bytes read=1836
        FILE: Number of bytes written=218883
        FILE: Number of read operations=0
        FILE: Number of large read operations=0
        FILE: Number of write operations=0
        HDFS: Number of bytes read=1466
        HDFS: Number of bytes written=1306
        HDFS: Number of read operations=6
        HDFS: Number of large read operations=0
        HDFS: Number of write operations=2
    Job Counters 
        Launched map tasks=1
        Launched reduce tasks=1
        Data-local map tasks=1
        Total time spent by all maps in occupied slots (ms)=11022
        Total time spent by all reduces in occupied slots (ms)=26723
        Total time spent by all map tasks (ms)=11022
        Total time spent by all reduce tasks (ms)=26723
        Total vcore-milliseconds taken by all map tasks=11022
        Total vcore-milliseconds taken by all reduce tasks=26723
        Total megabyte-milliseconds taken by all map tasks=11286528
        Total megabyte-milliseconds taken by all reduce tasks=27364352
    Map-Reduce Framework
        Map input records=31
        Map output records=179
        Map output bytes=2055
        Map output materialized bytes=1836
        Input split bytes=100
        Combine input records=179
        Combine output records=131
        Reduce input groups=131
        Reduce shuffle bytes=1836
        Reduce input records=131
        Reduce output records=131
        Spilled Records=262
        Shuffled Maps =1
        Failed Shuffles=0
        Merged Map outputs=1
        GC time elapsed (ms)=245
        CPU time spent (ms)=2700
        Physical memory (bytes) snapshot=291491840
        Virtual memory (bytes) snapshot=3782098944
        Total committed heap usage (bytes)=138350592
    Shuffle Errors
        BAD_ID=0
        CONNECTION=0
        IO_ERROR=0
        WRONG_LENGTH=0
        WRONG_MAP=0
        WRONG_REDUCE=0
    File Input Format Counters 
        Bytes Read=1366
    File Output Format Counters 
        Bytes Written=1306


7.查看文件输出结果 hadoop fs -ls /output
运行输出情况见下:
hadoop@master:~$ hadoop fs -ls /output
Found 2 items
-rw-r--r--   3 hadoop supergroup          0 2017-08-13 20:12 /output/_SUCCESS
-rw-r--r--   3 hadoop supergroup       1306 2017-08-13 20:12 /output/part-r-00000

8.查看词频统计结果 
hadoop fs -cat /output/part-r-00000
运行输出情况见下:
hadoop@master:~$ hadoop fs -cat /output/part-r-00000
(BIS),  1
(ECCN)  1
(TSU)   1
(see    1
5D002.C.1,  1
740.13) 1
 1
Administration  1
Apache  1
BEFORE  1
BIS 1
Bureau  1
Commerce,   1
Commodity   1
Control 1
Core    1
Department  1
ENC 1
Exception   1
Export  2
For 1
Foundation  1
Government  1
Hadoop  1
Hadoop, 1
Industry    1
Jetty   1
License 1
Number  1
Regulations,    1
SSL 1
Section 1
Security    1
See 1
Software    2
Technology  1
The 4
This    1
U.S.    1
Unrestricted    1
about   1
algorithms. 1
and 6
and/or  1
another 1
any 1
as  1
asymmetric  1
at: 2
both    1
by  1
check   1
classified  1
code    1
code.   1
concerning  1
country 1
country's   1
country,    1
cryptographic   3
currently   1
details 1
distribution    2
eligible    1
encryption  3
exception   1
export  1
following   1
for 3
form    1
from    1
functions   1
has 1
have    1
http://hadoop.apache.org/core/  1
http://wiki.apache.org/hadoop/  1
if  1
import, 2
in  1
included    1
includes    2
information 2
information.    1
is  1
it  1
latest  1
laws,   1
libraries   1
makes   1
manner  1
may 1
more    2
mortbay.org.    1
object  1
of  5
on  2
or  2
our 2
performing  1
permitted.  1
please  2
policies    1
possession, 2
project 1
provides    1
re-export   2
regulations 1
reside  1
restrictions    1
security    1
see 1
software    2
software,   2
software.   2
software:   1
source  1
the 8
this    3
to  2
under   1
use,    2
uses    1
using   2
visit   1
website 1
which   2
wiki,   1
with    1
written 1
you 1
your    1

9.将hdfs上文件导出到本地 
【注解】先在/home/hadoop/下新建一个/home/hadoop/example目录用于接受产生的文件
su hadoop 
mkdir /home/hadoop/example


再执行:
hadoop@master:~$ hadoop fs -get /output/part-r-00000 /home/hadoop/example

    执行完成后,在/home/hadoop/example目录下生成part-r-00000文件,见下图:
此时测试成功,即安装Hadoop并跑实例成功。

7.测试hadoop安装成功与否,并跑mapreduce实例_第2张图片

你可能感兴趣的:(hadoop/spark)