数据分析(7)-如何使用Python与Hadoop生态系统进行交互(译)

我们都知道hadoop主要使用java实现的,那么如何使用python与hadoop生态圈进行交互呢,我看到一篇很好的文章,结合google翻译和自己的认识分享给大家。
您将学习如何从Hadoop Distributed Filesystem直接加载文件内存等信息。将文件从本地移动到HDFS或设置Spark。

from pathlib import Path
import pandas as pd
import numpy as np

 

spark 安装

首先,安装findspark,以及pyspark,以防您在本地计算机上工作。如果您在Hadoop集群中关注本教程,可以跳过pyspark install。为简单起见,我将使用conda虚拟环境管理器(专业提示:在开始之前创建虚拟环境,不要破坏系统Python安装!)。

!conda install -c conda-forge findspark -y
!conda install -c conda-forge pyspark -y

使用findspark进行Spark设置

import findspark
# Local Spark
# findspark.init('/home/cloudera/miniconda3/envs/jupyter/lib/python3.7/site-packages/pyspark/')

# Cloudera cluster Spark
findspark.init(spark_home='/opt/cloudera/parcels/SPARK2-2.3.0.cloudera4-1.cdh5.13.3.p0.611179/lib/spark2/')

进入pyspark shell

from pyspark.sql import SparkSession
spark = SparkSession.builder.appName('example_app').master('local[*]').getOrCreate()

让我们获得现有的数据库。我假设您熟悉Spark DataFrame API及其方法:

spark.sql("show databases").show()

±-----------+
|databaseName|
±-----------+
| __ibis_tmp|
| analytics|
| db1|
| default|
| fhadoop|
| juan|
±-----------+

pandas -> spark

第一个集成是关于如何将数据从pandas库(即用于执行内存数据操作的Python标准库)移动到Spark。首先,让我们加载一个pandas DataFrame。这个是关于马德里的空气质量(只是为了满足您的好奇心,但对于将数据从一个地方移动到另一个地方并不重要)。你可以在这里下载。确保安装pytables以读取hdf5数据。

air_quality_df = pd.read_hdf('data/air_quality/air-quality-madrid/madrid.h5', key='28079008')
air_quality_df.head()
BEN CH4 CO EBE NMHC NO NO_2 NOx O_3 PM10 PM25 SO_2 TCH TOL
date
2001-07-01 01:00:00 30.65 NaN 6.91 42.639999 NaN NaN 381.299988 1017.000000 9.010000 158.899994 NaN 47.509998 NaN 76.050003
2001-07-01 02:00:00 29.59 NaN 2.59 50.360001 NaN NaN 209.500000 409.200012 23.820000 104.800003 NaN 20.950001 NaN 84.900002
2001-07-01 03:00:00 4.69 NaN 0.76 25.570000 NaN NaN 116.400002 143.399994 31.059999 48.470001 NaN 11.270000 NaN 20.980000
2001-07-01 04:00:00 4.46 NaN 0.74 22.629999 NaN NaN 116.199997 149.300003 23.780001 47.500000 NaN 10.100000 NaN 14.770000
2001-07-01 05:00:00 2.18 NaN 0.57 11.920000 NaN NaN 100.900002 124.800003 29.530001 49.689999 NaN 7.680000 NaN 8.970000
让我们对这个DataFrame进行一些更改,比如重置datetime索引,以便在加载到Spark时不会丢失信息。由于Spark在处理日期时遇到了一些问题(与系统区域设置,时区等相关),因此日期时间也将转换为字符串。
air_quality_df.reset_index(inplace=True)
air_quality_df['date'] = air_quality_df['date'].dt.strftime('%Y-%m-%d %H:%M:%S')

我们可以简单地从pandas加载到Spark createDataFrame:

air_quality_sdf = spark.createDataFrame(air_quality_df)
air_quality_sdf.dtypes

将DataFrame加载到Spark(如此air_quality_sdf处)后,可以使用PySpark方法轻松操作:

air_quality_sdf.select('date', 'NOx').show(5)

±------------------±-----------------+
| date| NOx|
±------------------±-----------------+
|2001-07-01 01:00:00| 1017.0|
|2001-07-01 02:00:00|409.20001220703125|
|2001-07-01 03:00:00|143.39999389648438|
|2001-07-01 04:00:00| 149.3000030517578|
|2001-07-01 05:00:00|124.80000305175781|
±------------------±-----------------+
only showing top 5 rows

pandas -> spark -> hive

要将Spark DataFrame持久保存到HDFS中,可以使用默认的Hadoop SQL引擎(Hive)进行查询,一个简单的策略(不是唯一的策略)是从该DataFrame创建时间视图:

air_quality_sdf.createOrReplaceTempView("air_quality_sdf")

创建时态视图后,可以使用Spark SQL引擎创建实时表create table as select。在创建此表之前,我将创建一个名为analytics存储它的新数据库

sql_drop_table = """
drop table if exists analytics.pandas_spark_hive
"""

sql_drop_database = """
drop database if exists analytics cascade
"""

sql_create_database = """
create database if not exists analytics
location '/user/cloudera/analytics/'
"""

sql_create_table = """
create table if not exists analytics.pandas_spark_hive
using parquet
as select to_timestamp(date) as date_parsed, *
from air_quality_sdf
"""

print("dropping database...")
result_drop_db = spark.sql(sql_drop_database)

print("creating database...")
result_create_db = spark.sql(sql_create_database)

print("dropping table...")
result_droptable = spark.sql(sql_drop_table)

print("creating table...")
result_create_table = spark.sql(sql_create_table)

borrando bb.dd...
creando bb.dd...
borrando tabla...
creando tabla...

可以使用Spark SQL引擎检查结果,例如选择臭氧污染物浓度随时间变化:

spark.sql("select * from analytics.pandas_spark_hive").select("date_parsed", "O_3").show(5)

±------------------±-----------------+
| date_parsed| O_3|
±------------------±-----------------+
|2001-07-01 01:00:00| 9.010000228881836|
|2001-07-01 02:00:00| 23.81999969482422|
|2001-07-01 03:00:00|31.059999465942383|
|2001-07-01 04:00:00|23.780000686645508|
|2001-07-01 05:00:00|29.530000686645508|
±------------------±-----------------+
only showing top 5 rows
 
 
 

Apache Arrow

Apache Arrow是一种内存中的柱状数据格式,用于支持大数据环境中的高性能操作(可以将其视为内存等效的parquet格式)。它是用C ++开发的,但它的Python API很棒,你现在可以看到,但首先请安装它:

!conda install pyarrow -y

为了与HDFS建立本地通信,我将使用pyarrow中包含的接口。只有要求是设置一个指向其位置的环境变量libhdfs。请记住,我们处于Cloudera环境中。如果你正在使用Horton必须找到合适的位置(相信我,它存在)。

建立连接

import pyarrow as pa
import os
os.environ['ARROW_LIBHDFS_DIR'] = '/opt/cloudera/parcels/CDH-5.14.4-1.cdh5.14.4.p0.3/lib64/'
hdfs_interface = pa.hdfs.connect(host='localhost', port=8020, user='cloudera')

在HDFS中列出文件

让我们列出Spark之前保存的文件。请记住,这些文件先前已从本地文件加载到pandas DataFrame中,然后加载到Spark DataFrame中。Spark默认使用分区为大量snappy压缩文件的文件。在HDFS路径中,您可以标识数据库名称(analytics)和表名称(pandas_spark_hive):

hdfs_interface.ls('/user/cloudera/analytics/pandas_spark_hive/')
['/user/cloudera/analytics/pandas_spark_hive/_SUCCESS',
 '/user/cloudera/analytics/pandas_spark_hive/part-00000-b4371c8e-0f5c-4d20-a136-a65e56e97f16-c000.snappy.parquet',
 '/user/cloudera/analytics/pandas_spark_hive/part-00001-b4371c8e-0f5c-4d20-a136-a65e56e97f16-c000.snappy.parquet',
 '/user/cloudera/analytics/pandas_spark_hive/part-00002-b4371c8e-0f5c-4d20-a136-a65e56e97f16-c000.snappy.parquet',
 '/user/cloudera/analytics/pandas_spark_hive/part-00003-b4371c8e-0f5c-4d20-a136-a65e56e97f16-c000.snappy.parquet',
 '/user/cloudera/analytics/pandas_spark_hive/part-00004-b4371c8e-0f5c-4d20-a136-a65e56e97f16-c000.snappy.parquet',
 '/user/cloudera/analytics/pandas_spark_hive/part-00005-b4371c8e-0f5c-4d20-a136-a65e56e97f16-c000.snappy.parquet',
 '/user/cloudera/analytics/pandas_spark_hive/part-00006-b4371c8e-0f5c-4d20-a136-a65e56e97f16-c000.snappy.parquet',
 '/user/cloudera/analytics/pandas_spark_hive/part-00007-b4371c8e-0f5

Reading parquet files directly from HDFS

要直接从HDFS读取representing文件(或充满表示文件的文件的文件夹),我将使用之前创建的PyArrow HDFS界面:

table = hdfs_interface.read_parquet('/user/cloudera/analytics/pandas_spark_hive/')

HDFS -> pandas

一旦parquetPyArrow HDFS接口读取文件,就会创建一个Table对象。我们可以通过方法轻松回到pandas 使用 to_pandas:

table_df = table.to_pandas()
table_df.head()
/home/cloudera/miniconda3/envs/jupyter/lib/python3.6/site-packages/pyarrow/pandas_compat.py:752: FutureWarning: .labels was deprecated in version 0.24.0. Use .codes instead.
  labels, = index.labels
date_parsed date BEN CH4 CO EBE NMHC NO NO_2 NOx O_3 PM10 PM25 SO_2 TCH TOL
0 2001-06-30 23:00:00 2001-07-01 01:00:00 30.65 NaN 6.91 42.639999 NaN NaN 381.299988 1017.000000 9.010000 158.899994 NaN 47.509998 NaN 76.050003
1 2001-07-01 00:00:00 2001-07-01 02:00:00 29.59 NaN 2.59 50.360001 NaN NaN 209.500000 409.200012 23.820000 104.800003 NaN 20.950001 NaN 84.900002
2 2001-07-01 01:00:00 2001-07-01 03:00:00 4.69 NaN 0.76 25.570000 NaN NaN 116.400002 143.399994 31.059999 48.470001 NaN 11.270000 NaN 20.980000
3 2001-07-01 02:00:00 2001-07-01 04:00:00 4.46 NaN 0.74 22.629999 NaN NaN 116.199997 149.300003 23.780001 47.500000 NaN 10.100000 NaN 14.770000
4 2001-07-01 03:00:00 2001-07-01 05:00:00 2.18 NaN 0.57 11.920000 NaN NaN 100.900002 124.800003 29.530001 49.689999 NaN 7.680000 NaN 8.970000
这就是我们开始的基础,关闭循环Python - > Hadoop - > Python。

上传本地文件到HDFS

使用PyArrow HDFS接口支持所有类型的HDFS操作,例如,将一堆本地文件上传到HDFS:

cwd = Path('./data/')
destination_path = '/user/cloudera/analytics/data/'

for f in cwd.rglob('*.*'):
    print(f'uploading {f.name}')
    with open(str(f), 'rb') as f_upl:
        hdfs_interface.upload(destination_path + f.name, f_upl)
uploading sandp500.zip
uploading stations.csv
uploading madrid.h5
uploading diamonds_train.csv
uploading diamonds_test.csv

让我们检查文件是否已正确上传,列出目标路径中的文件:

hdfs_interface.ls(destination_path)
['/user/cloudera/analytics/data/diamonds_test.csv',
 '/user/cloudera/analytics/data/diamonds_train.csv',
 '/user/cloudera/analytics/data/madrid.h5',
 '/user/cloudera/analytics/data/sandp500.zip',
 '/user/cloudera/analytics/data/stations.csv']

Reading arbitrary files (not parquet) from HDFS (HDFS -> pandas example

例如,.csv可以使用方法和标准pandas函数将文件从HDFS直接加载到pandas DataFrame中open,read_csv该函数可以获取缓冲区作为输入:

diamonds_train = pd.read_csv(hdfs_interface.open('/user/cloudera/analytics/data/diamonds_train.csv'))
diamonds_train.head()
carat cut color clarity depth table price x y z
0 1.21 Premium J VS2 62.4 58.0 4268 6.83 6.79 4.25
1 0.32 Very Good H VS2 63.0 57.0 505 4.35 4.38 2.75
2 0.71 Fair G VS1 65.5 55.0 2686 5.62 5.53 3.65
3 0.41 Good D SI1 63.8 56.0 738 4.68 4.72 3.00
4 1.02 Ideal G SI1 60.5 59.0 4882 6.55 6.51 3.95

如果您对该库具有的所有方法和可能性感兴趣,请访问:https://arrow.apache.org/docs/python/filesystems.html#hdfs-api
 
 

WebHDFS

有时无法访问libhdfs本机HDFS库(例如,从不属于群集的计算机执行分析)。在这种情况下,我们可以依赖WebHDFS(HDFS服务REST API),它速度较慢,不适合繁重的大数据负载,但在轻量级工作负载的情况下是一个有趣的选择。让我们安装一个WebHDFS Python API:

!conda install -c conda-forge python-hdfs -y
Collecting package metadata: done
Solving environment: done

## Package Plan ##

  environment location: /home/cloudera/miniconda3/envs/jupyter

  added / updated specs:
    - python-hdfs


The following packages will be downloaded:

    package                    |            build
    ---------------------------|-----------------
    certifi-2019.3.9           |           py36_0         149 KB  conda-forge
    ------------------------------------------------------------
                                           Total:         149 KB

The following packages will be UPDATED:

  ca-certificates    pkgs/main::ca-certificates-2019.1.23-0 --> conda-forge::ca-certificates-2019.3.9-hecc5488_0

The following packages will be SUPERSEDED by a higher-priority channel:

  certifi                                         pkgs/main --> conda-forge
  openssl              pkgs/main::openssl-1.1.1b-h7b6447c_1 --> conda-forge::openssl-1.1.1b-h14c3975_1



Downloading and Extracting Packages
certifi-2019.3.9     | 149 KB    | ##################################### | 100% 
Preparing transaction: done
Verifying transaction: done
Executing transaction: done

建立WebHDFS连接

建立连接

from hdfs import InsecureClient

web_hdfs_interface = InsecureClient('http://localhost:50070', user='cloudera')

List files in HDFS

列表文件类似于使用PyArrow接口,只需使用list方法和HDFS 路径:

web_hdfs_interface.list('/user/cloudera/analytics/data')
['diamonds_test.csv',
 'diamonds_train.csv',
 'madrid.h5',
 'sandp500.zip',
 'stations.csv']

上传本地文件到HDFS采用WebHDFS

cwd = Path('./data/')
destination_path = '/user/cloudera/analytics/data_web_hdfs/'

for f in cwd.rglob('*.*'):
    print(f'uploading {f.name}')
    web_hdfs_interface.upload(destination_path + f.name, 
                              str(f),
                              overwrite=True)
uploading sandp500.zip
uploading stations.csv
uploading madrid.h5
uploading diamonds_train.csv
uploading diamonds_test.csv

让我们检查上传是否正确:

web_hdfs_interface.list(destination_path)
['diamonds_test.csv',
 'diamonds_train.csv',
 'madrid.h5',
 'sandp500.zip',
 'stations.csv']

HDFS也可以处理更大的文件(有一些限制)。这些文件来自Kaggle Microsoft恶意软件竞赛, 每个重量为几GB:

web_hdfs_interface.upload(destination_path + 'train.parquet', '/home/cloudera/analytics/29_03_2019/notebooks/data/microsoft/train.pq', overwrite=True);
web_hdfs_interface.upload(destination_path + 'test.parquet', '/home/cloudera/analytics/29_03_2019/notebooks/data/microsoft/test.pq', overwrite=True);

使用WebHDFS 从HDFS读取文件(HDFS - > pandas示例)¶

在这种情况下,使用PyArrow parquet模块并传递缓冲区来创建Table对象很有用。之后,可以使用to_pandas方法从Table对象轻松创建pandas DataFrame :

from pyarrow import parquet as pq
from io import BytesIO

with web_hdfs_interface.read(destination_path + 'train.parquet') as reader:
    microsoft_train = pq.read_table(BytesIO(reader.read())).to_pandas()
microsoft_train.head()

MachineIdentifier ProductName EngineVersion AppVersion AvSigVersion IsBeta RtpStateBitfield IsSxsPassiveMode DefaultBrowsersIdentifier AVProductStatesIdentifier Census_FirmwareVersionIdentifier Census_IsSecureBootEnabled Census_IsWIMBootEnabled Census_IsVirtualDevice Census_IsTouchEnabled Census_IsPenCapable Census_IsAlwaysOnAlwaysConnectedCapable Wdft_IsGamer Wdft_RegionIdentifier HasDetections
0 0000028988387b115f69f31a3bf04f09 win8defender 1.1.15100.1 4.18.1807.18075 1.273.1735.0 0 7.0 0 NaN 53447.0 36144.0 0 NaN 0.0 0 0 0.0 0.0 10.0 0
1 000007535c3f730efa9ea0b7ef1bd645 win8defender 1.1.14600.4 4.13.17134.1 1.263.48.0 0 7.0 0 NaN 53447.0 57858.0 0 NaN 0.0 0 0 0.0 0.0 8.0 0
2 000007905a28d863f6d0d597892cd692 win8defender 1.1.15100.1 4.18.1807.18075 1.273.1341.0 0 7.0 0 NaN 53447.0 52682.0 0 NaN 0.0 0 0 0.0 0.0 3.0 0
3 00000b11598a75ea8ba1beea8459149f win8defender 1.1.15100.1 4.18.1807.18075 1.273.1527.0 0 7.0 0 NaN 53447.0 20050.0 0 NaN 0.0 0 0 0.0 0.0 3.0 1
4 000014a5f00daa18e76b81417eeb99fc win8defender 1.1.15100.1 4.18.1807.18075 1.273.1379.0 0 7.0 0 NaN 53447.0 19844.0 0 0.0 0.0 0 0 0.0 0.0 1.0 1

5 rows × 83 columns

 
 

Hive + Impala

Hive和Impala是Hadoop的两个SQL引擎。一个是基于MapReduce(Hive),而Impala是Cloudera创建和开源的更现代,更快速的内存实现。两个引擎都可以使用其多个API之一从Python中充分利用。在这种情况下,我将向您展示impyla,它支持两个引擎。让我们使用conda安装它,不要忘记安装thrift_sasl0.2.1版本(是的,必须是这个特定的版本,否则它将无法工作):

!conda install impyla thrift_sasl=0.2.1 -y
## Package Plan ##

  environment location: /home/cloudera/miniconda3/envs/jupyter

  added / updated specs:
    - impyla
    - thrift_sasl=0.2.1


The following packages will be downloaded:

    package                    |            build
    ---------------------------|-----------------
    certifi-2019.3.9           |           py36_0         155 KB
    ------------------------------------------------------------
                                           Total:         155 KB

The following packages will be SUPERSEDED by a higher-priority channel:

  ca-certificates    conda-forge::ca-certificates-2019.3.9~ --> pkgs/main::ca-certificates-2019.1.23-0
  certifi                                       conda-forge --> pkgs/main
  openssl            conda-forge::openssl-1.1.1b-h14c3975_1 --> pkgs/main::openssl-1.1.1b-h7b6447c_1



Downloading and Extracting Packages
certifi-2019.3.9     | 155 KB    | ##################################### | 100% 
Preparing transaction: done
Verifying transaction: done
Executing transaction: done

建立连接

from impala.dbapi import connect
from impala.util import as_pandas
Hive (Hive -> pandas example)

API遵循经典的ODBC标准,您可能对此很熟悉。impyla包括一个名为的实用程序函数as_pandas,可以轻松地将结果(元组列表)解析为pandas DataFrame。谨慎使用它,它存在某些类型的数据问题,并且对大数据工作负载效率不高。以两种方式获取结果:

hive_conn = connect(host='localhost', port=10000, database='analytics', auth_mechanism='PLAIN')

with hive_conn.cursor() as c:
    c.execute('SELECT * FROM analytics.pandas_spark_hive LIMIT 100')
    results = c.fetchall()
    
with hive_conn.cursor() as c:
    c.execute('SELECT * FROM analytics.pandas_spark_hive LIMIT 100')
    results_df = as_pandas(c)

Impala (Impala -> pandas example)

使用Impala遵循与Hive相同的模式,只需确保连接到正确的端口,在这种情况下默认为21050:

impala_conn = connect(host='localhost', port=21050)

with impala_conn.cursor() as c:
    c.execute('show databases')
    result_df = as_pandas(c)
name comment
0 __ibis_tmp
1 _impala_builtins System database for Impala builtin functions
2 analytics
3 db1
4 default Default Hive database
5 fhadoop
6 juan

Ibis Framework

另一种选择是Ibis Framework,它是一个相对庞大的数据源集合的高级API,包括HDFS和Impala。它是围绕使用Python对象和方法对这些源执行操作的想法构建的。让我们以与其他库相同的方式安装它:

!conda install ibis-framework -y

让我们创建一个HDFS和Impala接口(impala需要在Ibis中使用hdfs接口对象):

import ibis

hdfs_ibis = ibis.hdfs_connect(host='localhost', port=50070)
impala_ibis = ibis.impala.connect(host='localhost', port=21050, hdfs_client=hdfs_ibis, user='cloudera')

创建接口后,可以执行调用方法的操作,无需编写更多SQL。如果您熟悉ORM(对象关系映射器),这不完全相同,但基本思想非常相似。

impala_ibis.invalidate_metadata()
impala_ibis.list_databases()

[’__ibis_tmp’,
‘_impala_builtins’,
‘analytics’,
‘db1’,
‘default’,
‘fhadoop’,
‘juan’]

Impala -> pandas

ibis本地工作于pandas,因此无需进行转换。读表返回一个pandas DataFrame对象:

table = impala_ibis.table('pandas_spark_hive', database='analytics')
table_df = table.execute()
table_df.head()

pandas–>Impala

从pandas到Impala可以使用Ibis使用Impala接口选择数据库,设置权限(取决于您的群集设置)并使用该方法create,将pandas DataFrame对象作为参数传递:

analytics_db.table('diamonds').execute().head(5)

carat cut color clarity depth table price x y z
0 1.21 Premium J VS2 62.4 58.0 4268 6.83 6.79 4.25
1 0.32 Very Good H VS2 63.0 57.0 505 4.35 4.38 2.75
2 0.71 Fair G VS1 65.5 55.0 2686 5.62 5.53 3.65
3 0.41 Good D SI1 63.8 56.0 738 4.68 4.72 3.00
4 1.02 Ideal G SI1 60.5 59.0 4882 6.55 6.51 3.95
最后希望翻译这篇文章对你有所帮助谢谢!

你可能感兴趣的:(Python,Hadoop,Python,Hadoop)