Java 学习系列:ConcurrentHashMap 的实现原理

在jdk并发包下面的ConcurrentHashMap类是一个支持多线程并发访问的集合类数据结构体; 支持多种方式的并发检索与更新操作. 包含containsKey, containsValue, remove, forEach等; 不允许null key与null value;

注: 此文基于jdk8环境


1 . 先看下ConcurrentHashMap的结构

Java 学习系列:ConcurrentHashMap 的实现原理_第1张图片

2 . 简述下对于并发控制的原理
1>. jdk7时, 采用分段锁机制首先根据key值hash定位要进行操作的segment[x], 然后对此段加锁, 再对hash值做一次hash散列定位到segment里面HashEntry[] 的哪一个节点, 再进行赋值替换操作, 在此期间包括扩容resize与原数据转移transfer;
2>.jdk8时, 取消了分段锁方式的数据结构, 还原成了类似于HashMap内部那样的纵向数组, 横向链表的方式, 但是第一步定位到纵向数组节点后, 就会对改节点进行加锁, 后续在操作该节点下的链表元素;

3 . ConcurrentHashMap的初始化

/**
 * 记录容器的容量大小,采用CAS方式更新
 * Base counter value, used mainly when there is no contention,
 * but also as a fallback during table initialization
 * races. Updated via CAS.
 */
private transient volatile long baseCount;

/**
 * 记录容器初始化或者扩容状态的标志量
 * Table initialization and resizing control.  When negative, the
 * table is being initialized or resized: -1 for initialization,
 * else -(1 + the number of active resizing threads).  Otherwise,
 * when table is null, holds the initial table size to use upon
 * creation, or 0 for default. After initialization, holds the
 * next element count value upon which to resize the table.
 */
private transient volatile int sizeCtl;

/**
 * 仅仅创建一个空的map并设置容器大小, 后面第一次插入元素时才会真正进行节点创建
 * Creates a new, empty map with an initial table size
 * accommodating the specified number of elements without the need
 * to dynamically resize.
 *
 * @param initialCapacity The implementation performs internal
 * sizing to accommodate this many elements.
 * @throws IllegalArgumentException if the initial capacity of
 * elements is negative
 */
public ConcurrentHashMap(int initialCapacity) {
    if (initialCapacity < 0)
        throw new IllegalArgumentException();
    int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
               MAXIMUM_CAPACITY :
               tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
    this.sizeCtl = cap;
}

4 . 往ConcurrentHashMap put一个元素

public V put(K key, V value) {
    return putVal(key, value, false);
}

/** Implementation for put and putIfAbsent */
final V putVal(K key, V value, boolean onlyIfAbsent) {
    if (key == null || value == null) throw new NullPointerException();
    //散列下hash值, 让高位16位也参与hash运算以便hash分布的更散列
    int hash = spread(key.hashCode());
    int binCount = 0;
    for (Node[] tab = table;;) {
        Node f; int n, i, fh;
        if (tab == null || (n = tab.length) == 0)
            tab = initTable();// 初始化容器
        else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
            // 判断要添加的值落到了一个空的节点上, 所以直接插入进去即可
            if (casTabAt(tab, i, null,
                         new Node(hash, key, value, null)))
                break;                   // no lock when adding to empty bin
        }
        else if ((fh = f.hash) == MOVED)
            // 判断所命中节点处于转移状态中, 说明有其他线程正在操作此节点, 那就去帮助它进行数据转移
            tab = helpTransfer(tab, f);
        else {
            V oldVal = null;
            // 命中节点, 加锁该节点上的链表, 这一点和分段锁是比较像的, 但是更细化了, 相当于分段锁的数量变多了, 然后再进行后续操作
            synchronized (f) {
                if (tabAt(tab, i) == f) {
                    if (fh >= 0) {
                        // 遍历链表查到合适位置并赋值
                        binCount = 1;
                        for (Node e = f;; ++binCount) {
                            K ek;
                            if (e.hash == hash &&
                                ((ek = e.key) == key ||
                                 (ek != null && key.equals(ek)))) {
                                oldVal = e.val;
                                if (!onlyIfAbsent)
                                    e.val = value;
                                break;
                            }
                            Node pred = e;
                            if ((e = e.next) == null) {
                                pred.next = new Node(hash, key,
                                                          value, null);
                                break;
                            }
                        }
                    }
                    else if (f instanceof TreeBin) {
                        // 判断f是树, 进行树方式操作
                        Node p;
                        binCount = 2;
                        if ((p = ((TreeBin)f).putTreeVal(hash, key,
                                                       value)) != null) {
                            oldVal = p.val;
                            if (!onlyIfAbsent)
                                p.val = value;
                        }
                    }
                }
            }
            if (binCount != 0) {
                // 判断链表长度大于7了, 随即把链表转化为树, 提高操作效率, 这一点和HashMap相通, 是jdk8的优化
                if (binCount >= TREEIFY_THRESHOLD)
                    treeifyBin(tab, i);
                if (oldVal != null)
                    return oldVal;
                break;
            }
        }
    }
    // 容器元素总数加1, 此操作里包含了添加元素后的扩容, 扩充纵向数组大小
    addCount(1L, binCount);
    return null;
}

5 . 从ConcurrentHashMap get一个元素

/**
 * 根据一个指定的key在map里面查找获取对应的value, 没找到时返回null
 * Returns the value to which the specified key is mapped,
 * or {@code null} if this map contains no mapping for the key.
 *
 * 

More formally, if this map contains a mapping from a key * {@code k} to a value {@code v} such that {@code key.equals(k)}, * then this method returns {@code v}; otherwise it returns * {@code null}. (There can be at most one such mapping.) * * @throws NullPointerException if the specified key is null */ public V get(Object key) { Node[] tab; Node e, p; int n, eh; K ek; int h = spread(key.hashCode());// 先散列定位对应的数组节点 if ((tab = table) != null && (n = tab.length) > 0 && (e = tabAt(tab, (n - 1) & h)) != null) { // 刚好节点第一个元素hash值命中,直接比较对应key值 if ((eh = e.hash) == h) { if ((ek = e.key) == key || (ek != null && key.equals(ek))) return e.val; } // 去查找树 else if (eh < 0) return (p = e.find(h, key)) != null ? p.val : null; // 去查找链表 while ((e = e.next) != null) { if (e.hash == h && ((ek = e.key) == key || (ek != null && key.equals(ek)))) return e.val; } } return null; }

6 . ConcurrentHashMap 的扩容操作 resize

/**
 * Adds to count, and if table is too small and not already
 * resizing, initiates transfer. If already resizing, helps
 * perform transfer if work is available.  Rechecks occupancy
 * after a transfer to see if another resize is already needed
 * because resizings are lagging additions.
 *
 * @param x the count to add
 * @param check if <0, don't check resize, if <= 1 only check if uncontended
 */
private final void addCount(long x, int check) {
    CounterCell[] as; long b, s;
    if ((as = counterCells) != null ||
        !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
        CounterCell a; long v; int m;
        boolean uncontended = true;
        if (as == null || (m = as.length - 1) < 0 ||
            (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
            !(uncontended =
              U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
            //多线程CAS更新失败后执行
            fullAddCount(x, uncontended);
            return;
        }
        if (check <= 1)
            return;
        s = sumCount();
    }
    if (check >= 0) {
        Node[] tab, nt; int n, sc;
        // 判断是否满足扩容条件
        while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
               (n = tab.length) < MAXIMUM_CAPACITY) {
            int rs = resizeStamp(n);
            // 是否已经有线程在执行扩容操作了
            if (sc < 0) {
                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                    sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                    transferIndex <= 0)
                    break;
                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                    transfer(tab, nt);
            }
            else if (U.compareAndSwapInt(this, SIZECTL, sc,
                                         (rs << RESIZE_STAMP_SHIFT) + 2))
                transfer(tab, null);
            s = sumCount();
        }
    }
}

7 . 最后看下扩容大小数字算法

/**
 * 把所给整数扩增到比它大的最小的2的x次方的整数
 * Returns a power of two table size for the given desired capacity.
 * See Hackers Delight, sec 3.2
 */
private static final int tableSizeFor(int c) {
    int n = c - 1;
    n |= n >>> 1;
    n |= n >>> 2;
    n |= n >>> 4;
    n |= n >>> 8;
    n |= n >>> 16;
    return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

ps: 最后附个图说明下几种集合数据结构分别对多线程的支持情况

集合类 Key Value Super 说明
Hashtable 不允许为 null 不允许为 null Dictionary 线程安全
ConcurrentHashMap 不允许为 null 不允许为 null AbstractMap 分段锁技术
TreeMap 不允许为 null 允许为 null AbstractMap 线程不安全
HashMap 允许为 null 允许为 null AbstractMap 线程不安全

你可能感兴趣的:(Java 学习系列:ConcurrentHashMap 的实现原理)