基于梯度上升算法的Logistic回归

基本概念:

Logisitc回归用来解决二分类问题,训练数据为f(x,y),x为特征,y为类别。它的假设函数为Sigmoid函数,Sigmoid函数具体定义为:


这里写图片描述

Sigmoid函数图像:


基于梯度上升算法的Logistic回归_第1张图片
图1 Sigmoid函数

从图像中可看出该函数的值大于0小于1,在分类问题中若大于0.5,则属于类1,若小于0.5则属于类0。Sigmoid函数的输入X为:


这里写图片描述

其中的[x_0,x_1,x_2…x_n]为数据的特征项,向量w^T为我们需要训练的参数。

梯度上升法:

函数f(x,y)的梯度为:


基于梯度上升算法的Logistic回归_第2张图片

梯度上升的迭代公式为:


这里写图片描述

梯度下降算法是把加号变为减号:


这里写图片描述

from numpy import *
import matplotlib.pyplot as plt
import time


# calculate the sigmoid function
def sigmoid(inX):
    return 1.0 / (1 + exp(-inX))


# train a logistic regression model using some optional optimize algorithm
# input: train_x is a mat datatype, each row stands for one sample
#        train_y is mat datatype too, each row is the corresponding label
#        opts is optimize option include step and maximum number of iterations
def trainLogRegres(train_x, train_y, opts):
    # calculate training time
    startTime = time.time()

    numSamples, numFeatures = shape(train_x)
    alpha = opts['alpha']
    maxIter = opts['maxIter']
    weights = ones((numFeatures, 1))

    # optimize through gradient descent algorilthm
    for k in range(maxIter):
        if opts['optimizeType'] == 'gradDescent':  # gradient descent algorilthm
            output = sigmoid(train_x * weights)
            error = train_y - output
            weights = weights + alpha * train_x.transpose() * error
        elif opts['optimizeType'] == 'stocGradDescent':  # stochastic gradient descent
            for i in range(numSamples):
                output = sigmoid(train_x[i, :] * weights)
                error = train_y[i, 0] - output
                weights = weights + alpha * train_x[i, :].transpose() * error
        elif opts['optimizeType'] == 'smoothStocGradDescent':  # smooth stochastic gradient descent
            # randomly select samples to optimize for reducing cycle fluctuations
            dataIndex = list(range(numSamples))
            for i in range(numSamples):
                alpha = 4.0 / (1.0 + k + i) + 0.01
                randIndex = int(random.uniform(0, len(dataIndex)))
                output = sigmoid(train_x[randIndex, :] * weights)
                error = train_y[randIndex, 0] - output
                weights = weights + alpha * train_x[randIndex, :].transpose() * error
                del (dataIndex[randIndex])  # during one interation, delete the optimized sample
        else:
            raise NameError('Not support optimize method type!')

    print('Congratulations, training complete! Took %fs!' % (time.time() - startTime))
    return weights


# test your trained Logistic Regression model given test set
def testLogRegres(weights, test_x, test_y):
    numSamples, numFeatures = shape(test_x)
    matchCount = 0
    for i in range(numSamples):
        predict = sigmoid(test_x[i, :] * weights)[0, 0] > 0.5
        if predict == bool(test_y[i, 0]):
            matchCount += 1
    accuracy = float(matchCount) / numSamples
    return accuracy


# show your trained logistic regression model only available with 2-D data
def showLogRegres(weights, train_x, train_y):
    # notice: train_x and train_y is mat datatype
    numSamples, numFeatures = shape(train_x)
    if numFeatures != 3:
        print("Sorry! I can not draw because the dimension of your data is not 2!")
        return 1

        # draw all samples
    for i in range(numSamples):
        if int(train_y[i, 0]) == 0:
            plt.plot(train_x[i, 1], train_x[i, 2], 'or')
        elif int(train_y[i, 0]) == 1:
            plt.plot(train_x[i, 1], train_x[i, 2], 'ob')

            # draw the classify line
    min_x = min(train_x[:, 1])[0, 0]
    max_x = max(train_x[:, 1])[0, 0]
    weights = weights.getA()  # convert mat to array
    y_min_x = float(-weights[0] - weights[1] * min_x) / weights[2]
    y_max_x = float(-weights[0] - weights[1] * max_x) / weights[2]
    plt.plot([min_x, max_x], [y_min_x, y_max_x], '-g')
    plt.xlabel('X1')
    plt.ylabel('X2')
    plt.show()
def loadData():
    train_x = []
    train_y = []
    fileIn = open('E:/testSet.txt')
    for line in fileIn.readlines():
        lineArr = line.strip().split()
        train_x.append([1.0, float(lineArr[0]), float(lineArr[1])])
        train_y.append(float(lineArr[2]))
    return mat(train_x), mat(train_y).transpose()


## step 1: load data
print("step 1: load data...")
train_x, train_y = loadData()
test_x = train_x
test_y = train_y
## step 2: training...
print("step 2: training...")
opts = {'alpha': 0.01, 'maxIter': 50, 'optimizeType': 'stocGradDescent'}
optimalWeights = trainLogRegres(train_x, train_y, opts)

## step 3: testing
print("step 3: testing...")
accuracy = testLogRegres(optimalWeights, test_x, test_y)

## step 4: show the result
print("step 4: show the result...")
print('The classify accuracy is: %.3f%%' % (accuracy * 100))
showLogRegres(optimalWeights, train_x, train_y)

你可能感兴趣的:(机器学习)