最长递增子序列 51Nod 1134 最长递增子序列

1134 最长递增子序列 
基准时间限制:1 秒 空间限制:131072 KB 分值: 0  难度:基础题
 收藏
 关注
给出长度为N的数组,找出这个数组的最长递增子序列。(递增子序列是指,子序列的元素是递增的)
例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10。
Input
第1行:1个数N,N为序列的长度(2 <= N <= 50000)
第2 - N + 1行:每行1个数,对应序列的元素(-10^9 <= S[i] <= 10^9)
Output
输出最长递增子序列的长度。
Input示例
8
5
1
6
8
2
4
5
10
Output示例
5

第一次用的是最原始的版本,但是提交后时间超限。。。

这个时间复杂度是O(n^2)

#include
using namespace std;
const int MAXN=50005;
const int INF=0x3f3f3f3f;
int a[MAXN];
int dp[MAXN];
int main()
{
	int n;
	while(~scanf("%d",&n))
	{
		for(int i=0;i

后来又看了白书,有优化的版本,比着抄了一遍

这个用的是 lower_bound(),只需要循环一次就好,时间复杂度是O(nlogn);

代码如下

#include
using namespace std;
const int MAXN=50005;
const int INF=0x3f3f3f3f;
int a[MAXN];
int dp[MAXN];
int main()
{
	int n;
	while(~scanf("%d",&n))
	{
		memset(dp,0,sizeof(dp));
		for(int i=0;i



你可能感兴趣的:(动态规划)