- 常见机器学习算法总结
婉妃
基本算法总结正面.jpeg图的左半部分列出了常用的机器学习算法与它们之间的演化关系,分为有监督学习,无监督学习,强化学习3大类。右半部分列出了典型算法的总结比较,包括算法的核心点如类型,预测函数,求解的目标函数,求解算法。理解和记忆这张图,对你系统化的掌握机器学习与深度学习会非常有帮助!基本公式反面.jpeg
- 机器学习算法总结
doverxu
回归算法线性回归算法:支持向量机&向前逐步回归&惩罚线性回归(岭回归/套索回归/ElasticNet/最小角度回归LARS/Glmnet)非线性回归算法二元决策树:分割点评价标准是基尼不纯性度量和信息增益自举集成(Bagging):从训练数据集获得一系列的自举样本,对每一个自举样本训练一个基学习器,将基学习器的均值作为结果。梯度提升算法:与Bagging和随机森林的不同之处在于它在减少方差的同时,
- 【深入探究人工智能】:常见机器学习算法总结
.小智
小智带你闲聊人工智能机器学习算法
文章目录1、前言1.1机器学习算法的两步骤1.2机器学习算法分类2、逻辑回归算法2.1逻辑函数2.2逻辑回归可以用于多类分类2.3逻辑回归中的系数3、线性回归算法3.1线性回归的假设3.2确定线性回归模型的拟合优度3.3线性回归中的异常值处理4、支持向量机(SVM)算法4.1优点4.2缺点小结博客主页:小智_x0___0x_欢迎关注:点赞收藏✍️留言系列专栏:小智带你闲聊代码仓库:小智的代码仓库1
- Lime算法总结--可解释性机器学习算法总结
南京比高IT
可解释性分析算法人工智能
一.引言前面我们进行了CAM、GRAD-CAM算法的介绍,本文我们继续介绍一种算法:Lime(LocalInterpretableModel-AgnosticExplanations)二.算法介绍Lime算法是基于局部代理模型来对单个样本进行解释。假设对于需要解释的黑盒模型,取关注的实例样本,在其附近进行扰动生成新的样本点,并得到黑盒模型的预测值,基于新的数据集训练可解释的模型来得到对黑盒模型良好
- 机器学习算法总结
Yngxiao123
机器学习
朴素贝叶斯:有以下几个地方需要注意:只能做分类1.如果给出的特征向量长度可能不同,这是需要归一化为通长度的向量(这里以文本分类为例),比如说是句子单词的话,则长度为整个词汇量的长度,对应位置是该单词出现的次数。2.计算公式如下:其中一项条件概率可以通过朴素贝叶斯条件独立展开。要注意一点就是的计算方法,而由朴素贝叶斯的前提假设可知,=,因此一般有两种,一种是在类别为ci的那些样本集中,找到wj出现次
- 机器学习算法总结
程序汪赵可乐
cvnlp算法机器学习人工智能
机器学习两个核心任务:任务一:如何优化训练数据—>主要用于解决欠拟合问题任务二:如何提升泛化性能—>主要用于解决过拟合问题KNN定义:给定一个训练集,对新输入的未知样本,通过计算与每个训练样本的距离,找到与该实例最邻近的K个实例,这K个实例大多属于某个类,该样本就属于某个类应用场景:分类/回归问题算法流程:计算已知类别数据集中的点与当前点之间的距离按照距离值进行排序选取最小的k个距离,并统计这k个
- 机器学习算法总结
正在思考中
机器学习机器学习
机器学习(MachineLearning,ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。严格的定义:机器学习是一门研究机器获取新知识和新技能,并识别现有知识的学问。这里所说的“机器”,指的就是计算机,电子计算机,中子计算机、光子计算机或神经计算
- 十大常用机器学习算法总结(持续完善)
二哥不像程序员
数据挖掘机器学习算法python机器学习人工智能新星计划
前言之前二哥连载了各类常用的机器学习算法的原理与具体推倒过程,本文我们对常用的十大机器学习算法进行总结。记得收藏+点赞+评论呦!目录前言一、线性回归二、K近邻算法(KNN)三、朴素贝叶斯(NB)四、逻辑回归(LR)五、支持向量机(SVM)六、决策树(DT)七、随机森林(RF)八、GBDT九、XGBoost十、K-Means一、线性回归思路:线性回归假设目标值与特征之间线性相关,即满足一个多元一次方
- 【机器学习算法总结】XGBoost
y430
KaggleMachinelearning
目录1.XGBoost2.CART树2.1优缺点2.2分裂依据2.2.1分类2.2.2回归2.3总结2.4参考3.算法原理3.1定义树的复杂度3.2打分函数计算示例3.3分裂结点3.3.1贪心法3.3.2近似算法3.3.3分布式加权直方图算法(WeightedQuantileSketch)4.损失函数(指定grad、hess)4.1参考5.缺失值6.其他优化6.1正则化6.2计算速度提升6.2.1
- 机器学习算法总结(六)——EM算法与高斯混合模型
weixin_30291791
人工智能
极大似然估计是利用已知的样本结果,去反推最有可能(最大概率)导致这样结果的参数值,也就是在给定的观测变量下去估计参数值。然而现实中可能存在这样的问题,除了观测变量之外,还存在着未知的隐变量,因为变量未知,因此无法直接通过最大似然估计直接求参数值。EM算法是一种迭代算法,用于含有隐变量的概率模型的极大似然估计,或者说是极大后验概率估计。1、经典的三硬币模型引入一个例子来说明隐变量存在的问题。假设有3
- 机器学习总结一:Bagging之决策树、随机森林原理与案例
想考个研
机器学习决策树随机森林
机器学习算法总结一、Bagging之决策树、随机森林原理与案例二、boosting之GBDT、XGBT原理推导与案例三、SVM原理推导与案例四、逻辑回归与反欺诈检测案例五、聚类之K-means一、Bagging之决策树、随机森林原理与案例1.决策树1.1简介决策树(DecisionTree)是一种非参数的有监督学习方法,它能够从一系列有特征和标签的数据种总结出决策规则,并利用树状图结构呈现这些规则
- 机器学习总结三:SVM原理推导与案例
想考个研
机器学习支持向量机算法
机器学习算法总结一、Bagging之决策树、随机森林原理与案例二、boosting之GBDT、XGBT原理推导与案例三、SVM原理推导与案例四、逻辑回归与反欺诈检测案例五、聚类之K-means三、SVM1.原理推导(硬间隔)1.1分类问题代数化**svm原理一句话概括:找出一个最优的直线(或超平面)去隔离不同类别样本数据,达到分类目的。**图1图2图1:找出一条直线将样本完美地划分成两类(注意这样
- 机器学习总结四:逻辑回归与反欺诈检测案例
想考个研
机器学习逻辑回归算法
机器学习算法总结一、Bagging之决策树、随机森林原理与案例二、boosting之GBDT、XGBT原理推导与案例三、SVM原理推导与案例四、逻辑回归与反欺诈检测案例五、聚类之K-means四、逻辑回归1、概述由线性回归变化而来的,应用于分类问题中的广义回归算法。组成:回归函数z=w1x1+w2x2+...+wnxn+b=[w1w2wnb]∗[x1x2⋮xn1]=wTXz=w_1x_1+w_2x
- 机器学习算法总结--朴素贝叶斯
spearhead_cai
机器学习算法总结机器学习算法朴素贝叶斯
这次需要总结的是朴素贝叶斯算法,参考文章:《统计学习方法》机器学习常见算法个人总结(面试用)朴素贝叶斯理论推导与三种常见模型朴素贝叶斯的三个常用模型:高斯、多项式、伯努利简介朴素贝叶斯是基于贝叶斯定理与特征条件独立假设的分类方法。贝叶斯定理是基于条件概率来计算的,条件概率是在已知事件B发生的前提下,求解事件A发生的概率,即P(A|B)=P(AB)P(B),而贝叶斯定理则可以通过P(A|B)来求解P
- 机器学习算法总结
ZQ_ZHU
MachineLearning秋招机器学习算法
转自:https://blog.csdn.net/weixin_40411446/article/details/81836322~~~~~·个人整理,如需转载,请说明并备注,不甚感激~~~~~~(这篇文章我很早发布在简书上,不用简书好多年了,哈哈哈,居然上了热搜,特复制在CSDN上供大家参考,为秋招攒点人品)suxuer简书原文地址BAT机器学习面试系列1.请简要介绍下SVM。SVM,全称是su
- 机器学习算法总结
#叫啥名字呢
机器学习机器学习算法
~~~~~·个人整理,如需转载,请说明并备注,不甚感激~~~~~~(这篇文章我很早发布在简书上,不用简书好多年了,哈哈哈,居然上了热搜,特复制在CSDN上供大家参考,为秋招攒点人品)suxuer简书原文地址BAT机器学习面试系列1.请简要介绍下SVM。SVM,全称是supportvectormachine,中文名叫支持向量机。SVM是一个面向数据的分类算法,它的目标是为确定一个分类超平面,从而将不
- 机器学习期末练习题
unseven
机器学习机器学习期末练习题
目录KNN决策树朴素贝叶斯SVMadaboost梯度下降法KmeansAprioriSVD重要的评估指标(注意F1score)机器学习算法总结过拟合和欠拟合产生的原因:解决欠拟合(高偏差)的方法解决过拟合(高方差)的方法:KNN决策树朴素贝叶斯SVMadaboost这个题的答案给的有问题,推荐看完这个解析41、AdaBoost算法原理的举例推演梯度下降法KmeansAprioriSVD重要的评估指
- 梯度提升决策树(GBDT)与XGBoost、LightGBM
weixin_ry5219775
决策树机器学习算法
20211224【机器学习算法总结】XGBoost_yyy430的博客-CSDN博客_xgboostxgboost参数默认:auto。XGBoost中使用的树构造算法。可选项:auto,exact,approx,hist,gpu_exact,gpu_hist。分布式和外部存储器版本仅支持tree_method=approx。auto:使用启发式方法选择最快的方法。(1)对于中小型数据集,将使用精确
- 支持向量机SVM
余生最年轻
机器学习
关键字:vector,support,machine,核函数,支持向量机由于自然语言分类总结:SVM是一个分类问题,在学习复杂的非线性方程时效果很好,是监督式学习(详见前面的微博:机器学习算法总结)。例子:from吴恩达的机器学习视频,肿瘤大小与是否患病的例子1.定义找到一条直线,使得直线可以划分两类,并且到两类的距离(就是图上的垂线长度)一样,这是一条最佳的直线。离直线最近的点叫vector,直
- 机器学习算法总结之聚类:K-means
kaiyuan_sjtu
ML算法总结
写在前面在前面学习的ML算法中,基本都是有监督学习类型,即存在样本标签。然而在机器学习的任务中,还存在另外一种训练样本的标签是未知的,即“无监督学习”。此类任务中研究最多、应用最广泛的是“聚类”(clustering),常见的无监督学习任务还有密度估计、异常检测等。本文将首先介绍聚类基本概念,然后具体地介绍几类细分的聚类算法。参考资料:K-Means聚类算法原理1.聚类简介聚类试图将数据集中的样本
- 机器学习算法总结知识点索引
光英的记忆
算法tensorflowNLP
百面机器学习算法总结索引(声明:以下所有内容及其链接内容来自于百面机器学习一书,仅供自己方便学习和复习,不做任何商业用途,所有链接内容继承本声明)第一节:特征归一化1.为什么需要对数值类型的特征做归一化?2.在对数据进行预处理时,应该怎样处理类别型特征?3.如何处理高纬度组合特征?什么是组合特征?4.5.有哪些文本表示模型?它们各有什么优缺点?6.Word2vec是如何工作的?它和LDA有什么区别
- 机器学习算法总结--决策树
spearhead_cai
机器学习算法
简介定义:分类决策树模型是一种描述对实例进行分类的树形结构。决策树由结点和有向边组成。结点有两种类型:内部结点和叶结点。内部结点表示一个特征或属性,叶结点表示一个类。决策树学习通常包括3个步骤:特征选择、决策树的生成和决策树的修剪。决策树学习本质上是从训练数据集中归纳出一组分类规则,也可以说是由训练数据集估计条件概率模型。它使用的损失函数通常是正则化的极大似然函数,其策略是以损失函数为目标函数的最
- 使用Python语言进行机器学习工作流的实例分析
冬之晓东
python机器学习数据处理数据挖掘
最近,在kaggle上找到一位大牛写的机器学习算法总结,感觉流程清晰,内容详实,因此翻译并分享下,由于作者不明原因将原文删除了,所以没法放上原文地址,文中主要以代码实践的方式展开各种算法,原理方面参考文中的地址连接(这是自己加上的),以便随时查阅~目录目录使用Python语言进行机器学习工作流的实例分析1.介绍2.机器学习工作流程3问题定义3.1问题特征3.2目标3.3变量4.输入输出5.安装工具
- 机器学习算法总结11:XGBoost
小颜学人工智能
机器学习
XGBoost(eXtremeGradientBoosting)是于2015年提出的GradientBoosting实现算法,在速度和精度较GBDT有显著提升。XGBoost以类似牛顿法的方式进行优化。任何机器学习问题都可以从目标函数出发,目标函数分为两部分:损失函数+正则化项,其中,损失函数用于描述模型拟合数据的程度,正则化项用于控制模型的复杂度。与GDBT一样,XGBoost采用加法模型,设基
- 机器学习算法总结12:LightGBM
小颜学人工智能
机器学习
LightGBM是一个梯度(GradientBoosting,GB)框架,可用于分类、回归、排序等机器学习任务。相比于XGBoost,LightGBM在不降低准确率的前提下,速度提升了10倍左右,占用内存下降了3倍左右。直方图算法(HistogramAlgorithm)的基本思想是将连续的特征离散化为k个离散特征,同时构造一个宽度为k的直方图,用于统计信息(含有k个bin)即将连续值映射到对应bi
- 机器学习算法总结9:k-means聚类算法
小颜学人工智能
机器学习
无监督学习:训练样本的标记信息是未知的,目标是通过对无标记训练样本的学习来揭示数据的内在性质及规律,为进一步的数据分析提供基础。聚类是典型无监督学习任务,它试图将数据集中的样本划分为若干个通常是不相交的子集,每个子集称为一个簇。距离度量:通过距离来定义相似度度量,距离越大,相似度越小。最常用的距离度量是闵可夫斯基距离,其中,当p=2时,称为欧氏距离;当p=1时,称为曼哈顿距离。详见我的博客:机器学
- 机器学习算法总结10:Bagging及随机森林
小颜学人工智能
机器学习
Bagging是并行式集成学习方法最著名的代表,可以用于分类任务,也可以用于回归任务,被誉为“代表集成学习技术水平的方法”。不同于Boosting方法对训练数据集赋予不同的权重训练基学习器,Bagging采用“重采样法”,将训练数据集进行采样,进而产生若干个不同的子集,再从每个数据子集中训练出一个基学习器,然后使用结合策略得到强学习器。为得到不同的采样集,使用自助采样法进行采样:给定包含m个样本的
- 机器学习算法总结6:线性回归与逻辑回归
小颜学人工智能
机器学习
线性回归(LinearRegression):线性回归是回归模型,y=f(x):表明自变量x和因变量y的关系。1.模型2.策略损失函数(平方损失函数):注:平方误差代价函数是解决回归问题最常用的代价函数。3.算法最小二乘法:注意:要求X是满秩的!逻辑回归(LogisticRegression):逻辑回归是统计学习中的经典分类方法,属于对数线性模型。1.模型逻辑回归实际上是处理二类分类问题的模型,输
- 基于scikit-learn的随机森林调参实战
kaiyuan_sjtu
ML算法总结
写在前面在之前一篇机器学习算法总结之Bagging与随机森林中对随机森林的原理进行了介绍。还是老套路,学习完理论知识需要实践来加深印象。在scikit-learn中,RF的分类类是RandomForestClassifier,回归类是RandomForestRegressor。当然RF的变种ExtraTrees也有,分类类ExtraTreesClassifier,回归类ExtraTreesRegr
- 【机器学习算法总结】GBDT
y430
MachinelearningKaggle
目录1、GBDT2、GBDT思想3、负梯度拟合4、损失函数4.1、分类4.2、回归5、GBDT回归算法6、GBDT分类算法6.1、二分类6.2、多分类7、正则化8、RF与GBDT之间的区别与联系9、优缺点优点缺点10、应用场景11、主要调参的参数12、sklearn.ensemble.GradientBoostingClassifier参数及方法说明参考1、GBDTGBDT(GradientBoo
- java线程Thread和Runnable区别和联系
zx_code
javajvmthread多线程Runnable
我们都晓得java实现线程2种方式,一个是继承Thread,另一个是实现Runnable。
模拟窗口买票,第一例子继承thread,代码如下
package thread;
public class ThreadTest {
public static void main(String[] args) {
Thread1 t1 = new Thread1(
- 【转】JSON与XML的区别比较
丁_新
jsonxml
1.定义介绍
(1).XML定义
扩展标记语言 (Extensible Markup Language, XML) ,用于标记电子文件使其具有结构性的标记语言,可以用来标记数据、定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言。 XML使用DTD(document type definition)文档类型定义来组织数据;格式统一,跨平台和语言,早已成为业界公认的标准。
XML是标
- c++ 实现五种基础的排序算法
CrazyMizzz
C++c算法
#include<iostream>
using namespace std;
//辅助函数,交换两数之值
template<class T>
void mySwap(T &x, T &y){
T temp = x;
x = y;
y = temp;
}
const int size = 10;
//一、用直接插入排
- 我的软件
麦田的设计者
我的软件音乐类娱乐放松
这是我写的一款app软件,耗时三个月,是一个根据央视节目开门大吉改变的,提供音调,猜歌曲名。1、手机拥有者在android手机市场下载本APP,同意权限,安装到手机上。2、游客初次进入时会有引导页面提醒用户注册。(同时软件自动播放背景音乐)。3、用户登录到主页后,会有五个模块。a、点击不胫而走,用户得到开门大吉首页部分新闻,点击进入有新闻详情。b、
- linux awk命令详解
被触发
linux awk
awk是行处理器: 相比较屏幕处理的优点,在处理庞大文件时不会出现内存溢出或是处理缓慢的问题,通常用来格式化文本信息
awk处理过程: 依次对每一行进行处理,然后输出
awk命令形式:
awk [-F|-f|-v] ‘BEGIN{} //{command1; command2} END{}’ file
[-F|-f|-v]大参数,-F指定分隔符,-f调用脚本,-v定义变量 var=val
- 各种语言比较
_wy_
编程语言
Java Ruby PHP 擅长领域
- oracle 中数据类型为clob的编辑
知了ing
oracle clob
public void updateKpiStatus(String kpiStatus,String taskId){
Connection dbc=null;
Statement stmt=null;
PreparedStatement ps=null;
try {
dbc = new DBConn().getNewConnection();
//stmt = db
- 分布式服务框架 Zookeeper -- 管理分布式环境中的数据
矮蛋蛋
zookeeper
原文地址:
http://www.ibm.com/developerworks/cn/opensource/os-cn-zookeeper/
安装和配置详解
本文介绍的 Zookeeper 是以 3.2.2 这个稳定版本为基础,最新的版本可以通过官网 http://hadoop.apache.org/zookeeper/来获取,Zookeeper 的安装非常简单,下面将从单机模式和集群模式两
- tomcat数据源
alafqq
tomcat
数据库
JNDI(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。
没有使用JNDI时我用要这样连接数据库:
03. Class.forName("com.mysql.jdbc.Driver");
04. conn
- 遍历的方法
百合不是茶
遍历
遍历
在java的泛
- linux查看硬件信息的命令
bijian1013
linux
linux查看硬件信息的命令
一.查看CPU:
cat /proc/cpuinfo
二.查看内存:
free
三.查看硬盘:
df
linux下查看硬件信息
1、lspci 列出所有PCI 设备;
lspci - list all PCI devices:列出机器中的PCI设备(声卡、显卡、Modem、网卡、USB、主板集成设备也能
- java常见的ClassNotFoundException
bijian1013
java
1.java.lang.ClassNotFoundException: org.apache.commons.logging.LogFactory 添加包common-logging.jar2.java.lang.ClassNotFoundException: javax.transaction.Synchronization
- 【Gson五】日期对象的序列化和反序列化
bit1129
反序列化
对日期类型的数据进行序列化和反序列化时,需要考虑如下问题:
1. 序列化时,Date对象序列化的字符串日期格式如何
2. 反序列化时,把日期字符串序列化为Date对象,也需要考虑日期格式问题
3. Date A -> str -> Date B,A和B对象是否equals
默认序列化和反序列化
import com
- 【Spark八十六】Spark Streaming之DStream vs. InputDStream
bit1129
Stream
1. DStream的类说明文档:
/**
* A Discretized Stream (DStream), the basic abstraction in Spark Streaming, is a continuous
* sequence of RDDs (of the same type) representing a continuous st
- 通过nginx获取header信息
ronin47
nginx header
1. 提取整个的Cookies内容到一个变量,然后可以在需要时引用,比如记录到日志里面,
if ( $http_cookie ~* "(.*)$") {
set $all_cookie $1;
}
变量$all_cookie就获得了cookie的值,可以用于运算了
- java-65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
bylijinnan
java
参考了网上的http://blog.csdn.net/peasking_dd/article/details/6342984
写了个java版的:
public class Print_1_To_NDigit {
/**
* Q65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
* 1.使用字符串
- Netty源码学习-ReplayingDecoder
bylijinnan
javanetty
ReplayingDecoder是FrameDecoder的子类,不熟悉FrameDecoder的,可以先看看
http://bylijinnan.iteye.com/blog/1982618
API说,ReplayingDecoder简化了操作,比如:
FrameDecoder在decode时,需要判断数据是否接收完全:
public class IntegerH
- js特殊字符过滤
cngolon
js特殊字符js特殊字符过滤
1.js中用正则表达式 过滤特殊字符, 校验所有输入域是否含有特殊符号function stripscript(s) { var pattern = new RegExp("[`~!@#$^&*()=|{}':;',\\[\\].<>/?~!@#¥……&*()——|{}【】‘;:”“'。,、?]"
- hibernate使用sql查询
ctrain
Hibernate
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import org.hibernate.Hibernate;
import org.hibernate.SQLQuery;
import org.hibernate.Session;
import org.hibernate.Transa
- linux shell脚本中切换用户执行命令方法
daizj
linuxshell命令切换用户
经常在写shell脚本时,会碰到要以另外一个用户来执行相关命令,其方法简单记下:
1、执行单个命令:su - user -c "command"
如:下面命令是以test用户在/data目录下创建test123目录
[root@slave19 /data]# su - test -c "mkdir /data/test123" 
- 好的代码里只要一个 return 语句
dcj3sjt126com
return
别再这样写了:public boolean foo() { if (true) { return true; } else { return false;
- Android动画效果学习
dcj3sjt126com
android
1、透明动画效果
方法一:代码实现
public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState)
{
View rootView = inflater.inflate(R.layout.fragment_main, container, fals
- linux复习笔记之bash shell (4)管道命令
eksliang
linux管道命令汇总linux管道命令linux常用管道命令
转载请出自出处:
http://eksliang.iteye.com/blog/2105461
bash命令执行的完毕以后,通常这个命令都会有返回结果,怎么对这个返回的结果做一些操作呢?那就得用管道命令‘|’。
上面那段话,简单说了下管道命令的作用,那什么事管道命令呢?
答:非常的经典的一句话,记住了,何为管
- Android系统中自定义按键的短按、双击、长按事件
gqdy365
android
在项目中碰到这样的问题:
由于系统中的按键在底层做了重新定义或者新增了按键,此时需要在APP层对按键事件(keyevent)做分解处理,模拟Android系统做法,把keyevent分解成:
1、单击事件:就是普通key的单击;
2、双击事件:500ms内同一按键单击两次;
3、长按事件:同一按键长按超过1000ms(系统中长按事件为500ms);
4、组合按键:两个以上按键同时按住;
- asp.net获取站点根目录下子目录的名称
hvt
.netC#asp.nethovertreeWeb Forms
使用Visual Studio建立一个.aspx文件(Web Forms),例如hovertree.aspx,在页面上加入一个ListBox代码如下:
<asp:ListBox runat="server" ID="lbKeleyiFolder" />
那么在页面上显示根目录子文件夹的代码如下:
string[] m_sub
- Eclipse程序员要掌握的常用快捷键
justjavac
javaeclipse快捷键ide
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 写道 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可
- c++编程随记
lx.asymmetric
C++笔记
为了字体更好看,改变了格式……
&&运算符:
#include<iostream>
using namespace std;
int main(){
int a=-1,b=4,k;
k=(++a<0)&&!(b--
- linux标准IO缓冲机制研究
音频数据
linux
一、什么是缓存I/O(Buffered I/O)缓存I/O又被称作标准I/O,大多数文件系统默认I/O操作都是缓存I/O。在Linux的缓存I/O机制中,操作系统会将I/O的数据缓存在文件系统的页缓存(page cache)中,也就是说,数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。1.缓存I/O有以下优点:A.缓存I/O使用了操作系统内核缓冲区,
- 随想 生活
暗黑小菠萝
生活
其实账户之前就申请了,但是决定要自己更新一些东西看也是最近。从毕业到现在已经一年了。没有进步是假的,但是有多大的进步可能只有我自己知道。
毕业的时候班里12个女生,真正最后做到软件开发的只要两个包括我,PS:我不是说测试不好。当时因为考研完全放弃找工作,考研失败,我想这只是我的借口。那个时候才想到为什么大学的时候不能好好的学习技术,增强自己的实战能力,以至于后来找工作比较费劲。我
- 我认为POJO是一个错误的概念
windshome
javaPOJO编程J2EE设计
这篇内容其实没有经过太多的深思熟虑,只是个人一时的感觉。从个人风格上来讲,我倾向简单质朴的设计开发理念;从方法论上,我更加倾向自顶向下的设计;从做事情的目标上来看,我追求质量优先,更愿意使用较为保守和稳妥的理念和方法。
&