- Transformer大模型实战 BART模型的架构
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Transformer大模型实战BART模型的架构作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming/TextGenWebUILLMTransformer大模型实战BART模型的架构1.背景介绍1.1问题的由来随着大规模预训练模型的兴起,如BERT、GPT系列等,研究人员发现基于Transformer架构的模型在自然语言处理任务上表现出了显著的优势。为
- 从文字到思维:呆马GPT在人工智能领域的创新之旅
呆码科技
gpt人工智能
引言生成式预训练变换器(GenerativePre-trainedTransformer,简称GPT)领域是人工智能技术中的一大革新。自OpenAI推出第一代GPT以来,该技术经历了多代发展,不断提升模型的规模、复杂度和智能化程度。GPT模型通过在大规模数据集上进行预训练,学习语言的统计规律和世界知识,然后在特定任务上进行微调,以适应不同的应用需求。GPT领域的发展推动了自然语言处理(NLP)技术
- BERT模型在情感分析中的应用:探寻文本情感的智能之路
Echo_Wish
前沿技术人工智能bert人工智能深度学习
随着互联网的普及和社交媒体的兴起,情感分析(SentimentAnalysis)已成为自然语言处理(NLP)领域的重要研究方向。情感分析通过对文本数据的分析,识别其中所表达的情感倾向(如正面、负面或中性)。近年来,BERT(BidirectionalEncoderRepresentationsfromTransformers)模型凭借其强大的上下文理解能力,在情感分析中展现出了卓越的性能。本文将深
- 想转行到人工智能领域,我该学什么,怎么学?
张登杰踩
人工智能python
转行到人工智能(AI)领域需要系统的学习和实践,以下是详细的路径建议,涵盖基础知识、技能学习、项目实践和求职准备:一、明确目标和领域方向人工智能领域广泛,建议先了解细分方向(如机器学习、深度学习、计算机视觉、自然语言处理、强化学习等),结合兴趣和职业规划选择切入点。二、构建基础知识1.数学基础线性代数:矩阵运算、特征值、向量空间。微积分:导数、梯度、优化理论。概率与统计:贝叶斯定理、分布、假设检验
- 自然语言处理的发展历程
数亦有术
自然语言处理人工智能
1.自然语言处理发展的7个阶段序号阶段时间贡献代表人物1起源期1913-1956思考使用图灵算法计量模型来描述自然语言,描述词语及词语之间的关系。这一阶段停留在理论层面做探索图灵、马尔可夫、香农2基于规则的形式语言理论期1957-1970形式语言理论的提出,开启了学术界对自然语言结构的研究、建模和解析,从而为基于结构与规则的文本识别、生成和翻译开辟了一条康庄大道诺姆·乔姆斯基、冯志伟3基于规则、概
- 【自然语言处理(NLP)】NLTK的使用(分句、分词、词频提取)
道友老李
自然语言处理(NLP)自然语言处理人工智能
文章目录介绍NLTK主要功能模块安装使用分句分词去除标点符号去除停用词stopword噪音单词,词频提取个人主页:道友老李欢迎加入社区:道友老李的学习社区介绍自然语言处理(NaturalLanguageProcessing,NLP)是计算机科学领域与人工智能领域中的一个重要方向。它研究的是人类(自然)语言与计算机之间的交互。NLP的目标是让计算机能够理解、解析、生成人类语言,并且能够以有意义的方式
- 【自然语言处理(NLP)】序列数据研究(创建序列数据、简单的MLP模型、预测结果分析)
道友老李
自然语言处理(NLP)自然语言处理人工智能
文章目录介绍序列数据研究导包安装d2l创建序列数据创建模型开始训练预测多步预测结论个人主页:道友老李欢迎加入社区:道友老李的学习社区介绍自然语言处理(NaturalLanguageProcessing,NLP)是计算机科学领域与人工智能领域中的一个重要方向。它研究的是人类(自然)语言与计算机之间的交互。NLP的目标是让计算机能够理解、解析、生成人类语言,并且能够以有意义的方式回应和操作这些信息。N
- 李开复:苹果发布AI应用的未来
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
苹果,AI,应用,未来,深度学习,自然语言处理,计算机视觉1.背景介绍近年来,人工智能(AI)技术取得了飞速发展,并开始渗透到人们生活的方方面面。从智能手机的语音助手到自动驾驶汽车,AI正在改变着我们的世界。作为科技巨头,苹果也积极布局AI领域,并将其融入到其产品和服务中。2017年,苹果发布了其首款AI芯片A11Bionic,并将其应用于iPhoneX等产品。该芯片拥有强大的神经网络处理能力,为
- 计算广告(一)
爱学习的菜鸟罢了
搜广推人工智能
计算广告学是一个十分庞大的学科,里面涵盖了自然语言处理、机器学习、推荐系统等众多研究方向。而且广告作为互联网行业的三大盈利模式(广告、电商、游戏)之一,也是这三大模式中最有技术含量的,计算广告学一直都吸引着无数学术界/工业界的精英投入其中(ps:计算广告学也是机器学习在商业界最成功的应用之一)。行业分类例子盈利搜索引擎Google百度广告社交网络腾讯facebook广告增值服务游戏电商网站亚马逊阿
- 快速入门Volc Engine的MaaS LLM模型
azzxcvhj
python
在这篇文章中,我将为你详细介绍如何使用VolcEngine的MaaSLLM模型。我们将从安装库开始,然后深入到具体的代码实现,最后分析其应用场景及实践建议。技术背景介绍VolcEngine(火山引擎)提供了一个强大的MaaS(ModelasaService)平台,支持多种语言模型。这个平台旨在让开发者更容易地集成和使用先进的自然语言处理能力。通过VolcEngine,开发者可以轻松实现文本生成、文
- 使用SolarChat实现中英韩翻译的实战指南
azzxcvhj
python
在这篇文章中,我们将探索如何利用SolarChat这一强大的聊天模型来实现中英韩翻译功能。SolarChat是一个方便的语言模型接口,能够帮助我们将自然语言处理任务集成到项目中。本文将详细介绍这个模型的核心原理,并通过示例代码展示如何使用它进行翻译。技术背景介绍随着人工智能的发展,语言模型在各种自然语言处理任务中扮演了重要角色。特别是在翻译、对话生成等领域,先进的语言模型如SolarChat为我们
- 使用 Tokenizers 分割文本:深入了解与实践
AWsggdrg
python
在开发应用自然语言处理(NLP)模型时,一个常见的需求是将文本拆分为较小的块,通常称为“tokens”。现代语言模型对tokens的数量有限制,因此在处理长文本时,我们需要仔细计算tokens以避免超过限制。本文将介绍如何使用不同的tokenizer来分割文本,并提供实用代码示例。技术背景介绍自然语言处理中的tokenization是指将文本拆分为更小的、可管理的单元,称为tokens。使用tok
- Python 如何使用 Bert 进行中文情感分析
程序员徐师兄
Python入门专栏pythonbert开发语言情感分析
前言在自然语言处理(NLP)领域,情感分析是一个非常常见且重要的应用。情感分析通常用于识别文本中的情感,例如判断一条微博或评论是正面、负面还是中性。在过去的几年中,随着深度学习的发展,BERT(BidirectionalEncoderRepresentationsfromTransformers)模型迅速成为了处理自然语言的强大工具。BERT是一种基于Transformer架构的预训练模型,它能够
- PyTorch深度学习实战(43)——手写文本识别
盼小辉丶
深度学习pytorch人工智能
PyTorch深度学习实战(43)——手写文本识别0.前言1.手写文本识别1.1基本概念1.2输入和输出格式1.3CTC损失值2.模型与数据集分析2.1数据集分析2.2模型分析3.实现手写文本识别模型小结系列链接0.前言手写文本识别,也称为手写文本的光学字符识别(OpticalCharacterRecognition,OCR),是计算机视觉和自然语言处理中的一项具有挑战性的任务。与印刷文本不同,手
- 深入理解旋转位置编码(RoPE)及其在大型语言模型中的应用
tangjunjun-owen
语言模型-多模态大模型语言模型人工智能自然语言处理RoPE旋转位置编码
文章目录前言一、旋转位置编码原理1、RoPE概述2、复数域内的旋转1、位置编码生成2、应用位置编码二、RoPE的实现细节1、RotaryEmbedding类设计2、apply_rotary_pos_emb函数3、demo_apply_rotary_pos_emb函数三、完整RoPE代码Demo前言随着自然语言处理(NLP)领域的快速发展,预训练的语言模型如BERT、GPT系列、PaLM、Qwen等
- python LTP 安装 failed building wheel for pyltp
Waldenz
NLPPythonLTPpythonltpwheelfailedbuildingwheel
LTP(LanguageTechnologyPlatform)语言技术平台。LTP提供了一系列中文自然语言处理工具,用户可以使用这些工具对于中文文本进行分词、词性标注、句法分析等等工作。主页GitHubpyltpwin10pip直接安装pyltp时的各种报错,Faildbuildingwheelforpyltp或者Runningsetup.pybdist_wheelforpyltp...error
- 面向 Data+AI 的统一数据目录探索 | Data Infra NO.22 回顾(含资料发布)
数据库
随着生成式人工智能(GenerativeAI)的崛起,从图像生成、自然语言处理到个性化推荐系统,生成式AI技术正迅速改变着各行各业的面貌。而在这场变革背后,数据的管理和治理显得尤为重要。对于企业来说,数据不仅是基础资源,更是构建AI应用和增强业务能力的关键。ApacheGravitino(incubating)与Databend作为数据领域两个知名的开源项目,正通过各自的创新技术和实践,为数据管理
- [python][whl]pyltp的whl格式文件所有版本下载地址汇总
FL1623863129
Pythonpython开发语言
pyltp:Python中的中文自然语言处理工具在数字化时代,自然语言处理(NLP)成为了与机器进行交互的关键技术。对于中文,由于其独特的语言结构和复杂性,专门的工具和库显得尤为重要。pyltp正是这样一个为中文NLP任务设计的Python库,它封装了LTP(LanguageTechnologyPlatform)的核心功能,使得开发者能够轻松地在Python环境中进行中文文本的处理和分析。pylt
- Java 大视界 -- Java 大数据文本分析与自然语言处理:从文本挖掘到智能对话
一只蜗牛儿
java大数据自然语言处理
在当今的信息化时代,数据成为了重要的资源。特别是文本数据,随处可见,如社交媒体、新闻网站、技术文档、客户反馈等,这些都包含着大量的潜在信息。因此,如何从海量的文本中提取有价值的信息,成为了大数据分析领域的重要课题。Java作为一种高效、灵活的编程语言,在大数据文本分析与自然语言处理(NLP)中发挥着至关重要的作用。本文将介绍如何利用Java开发大数据文本分析和自然语言处理(NLP)应用,带领你从文
- 未登录词 Out-of-Vocabulary, OOV
risc123456
nlp
未登录词oov未登录词(Out-of-Vocabulary,OOV)是指在训练数据中没有出现过的词汇,但在测试数据或实际应用中却出现了。未登录词是自然语言处理(NLP)任务中常见的挑战之一,因为它们可能导致模型无法正确处理或理解这些词汇,从而影响模型的性能。以下是一些关于未登录词的详细解释和处理方法:###未登录词的来源1.**罕见词**:在训练数据中出现次数非常少的词,可能在训练过程中被忽略或未
- 使用Google Vertex AI Search进行企业级高级搜索
hgSdaegva
人工智能python
技术背景介绍GoogleVertexAISearch(前称为EnterpriseSearchonGenerativeAIAppBuilder)是GoogleCloud提供的VertexAI机器学习平台的一部分。VertexAISearch允许组织快速建立由生成式AI驱动的搜索引擎,为客户和员工提供服务。它基于各种GoogleSearch技术,包括语义搜索,通过使用自然语言处理和机器学习技术来推断内
- 使用OpenAI Chat模型进行自然语言处理的实战指南
GEAWfaacc
自然语言处理easyui人工智能python
在本文中,我们将详细介绍如何利用OpenAI的Chat模型进行自然语言处理任务。我们将涵盖从API配置到实际应用的一整套流程,并提供可运行的代码示例来帮助大家上手。如果你对AI对话模型的实际应用感兴趣,那么这篇文章将非常适合你。一、技术背景介绍OpenAI的Chat模型是一类专门用于对话任务的预训练语言模型。它们可以处理多种输入类型,支持丰富的功能调用,适用于各种自然语言处理场景。从翻译到对话生成
- 大语言模型原理与工程实践:预训练数据构建
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:预训练数据构建1.背景介绍大语言模型(LargeLanguageModels,LLMs)近年来在自然语言处理(NLP)领域取得了显著的进展。诸如GPT-3、BERT等模型在各种任务中表现出色,从文本生成到情感分析,再到机器翻译,几乎无所不能。这些模型的成功很大程度上依赖于预训练数据的质量和规模。预训练数据的构建不仅影响模型的性能,还决定了模型的泛化能力和应用范围。在本文中
- 大语言模型原理与工程实践:网页数据
AI大模型应用之禅
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:网页数据1.背景介绍在当今信息爆炸的时代,网页数据成为了大数据的重要来源之一。网页数据不仅包含了丰富的文本信息,还包括了图像、视频、音频等多媒体内容。大语言模型(LargeLanguageModels,LLMs)作为自然语言处理(NLP)领域的前沿技术,能够从海量的网页数据中提取有价值的信息,进行文本生成、情感分析、问答系统等多种任务。大语言模型的成功离不开深度学习技术的
- 大语言模型原理与工程实践:案例介绍
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:案例介绍作者:禅与计算机程序设计艺术近年来,随着深度学习技术的快速发展,大语言模型(LargeLanguageModel,LLM)在自然语言处理领域取得了突破性进展,展现出强大的文本生成、理解和推理能力。从智能对话到机器翻译,从代码生成到诗歌创作,LLM正在深刻地改变着我们与信息交互的方式,并为人工智能应用开拓了更广阔的空间。1.背景介绍1.1大语言模型的兴起大语言模型的
- Jetbrains Ai Assistant插件越来越好用了
Ai 编码
Ai编码工具人工智能android
在IntelliJIDEA中,JetBrainsAI是JetBrains集成的人工智能功能,旨在提高开发效率,辅助开发者更智能地编写、优化和理解代码。JetBrainsAI作为IntelliJIDEA的一部分,通过自然语言处理和机器学习技术,提供了许多智能代码建议和自动化功能。点击这里:获取JetbrainsAiAssistant插件 以下是JetBrainsAI在IntelliJIDEA中的一
- AI驱动电商搜索导购:技术创新与应用
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
文章标题《AI驱动电商搜索导购:技术创新与应用》关键词:人工智能,电商搜索导购,机器学习,深度学习,推荐系统,自然语言处理,个性化搜索,图像识别,应用案例,未来展望。摘要:本文旨在探讨人工智能(AI)在电商搜索导购领域的应用,分析其技术创新和实际应用案例,探讨AI驱动电商搜索导购的未来发展趋势。文章首先介绍了AI在电商搜索导购中的角色和优势,然后深入探讨了AI基础理论和搜索导购技术原理。接着,文章
- WebRover :一个功能强大的 Python 库,用于从 Web 内容生成高质量的数据集。
数据集
2024-11-30,由Area-25团队开发的一个专门用于生成高质量网络内容数据集的Python库。该数据集旨在为大型语言模型(LLM)和人工智能应用的训练提供丰富的数据资源。数据集地址:WebRoverDataset|自然语言处理数据集|AI模型训练数据集一、让我们一起来看一下WebRoverWebRover通过智能网络爬虫技术,自动从网络中提取与特定主题相关的内容,并支持多种输入格式,如JS
- 探索LangChain中OpenAI模型的token级log probabilities
jkgSFS
langchaineasyui前端python
在AI模型的开发和调试中,了解每个生成token的概率是非常有用的。这些信息可以帮我们理解模型的决策过程,识别可能的错误。本篇文章将介绍如何通过LangChain与OpenAI整合来获取这些token级的logprobabilities。技术背景介绍什么是LogProbabilities?在自然语言处理中,logprobabilities是一种对token生成概率的度量。通常,这个值越高,表示生成
- 使用VolcEngine Maas Chat进行语言模型对话的入门指南
dagGAIYD
语言模型人工智能自然语言处理python
技术背景介绍VolcEngineMaasChat模型提供了一种便捷的方式进行对话接口的设计与实现,特别是对于自然语言处理(NLP)应用。通过简单的API调用,开发者可以轻松集成强大的AI对话能力到他们的应用中。本文将指导您如何使用VolcEngineMaasChat进行对话交互。核心原理解析VolcEngineMaasChat利用大语言模型来处理和生成自然语言,在接收到用户的输入后,模型会通过分析
- 矩阵求逆(JAVA)初等行变换
qiuwanchi
矩阵求逆(JAVA)
package gaodai.matrix;
import gaodai.determinant.DeterminantCalculation;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
/**
* 矩阵求逆(初等行变换)
* @author 邱万迟
*
- JDK timer
antlove
javajdkschedulecodetimer
1.java.util.Timer.schedule(TimerTask task, long delay):多长时间(毫秒)后执行任务
2.java.util.Timer.schedule(TimerTask task, Date time):设定某个时间执行任务
3.java.util.Timer.schedule(TimerTask task, long delay,longperiod
- JVM调优总结 -Xms -Xmx -Xmn -Xss
coder_xpf
jvm应用服务器
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。
典型设置:
java -Xmx
- JDBC连接数据库
Array_06
jdbc
package Util;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
public class JDBCUtil {
//完
- Unsupported major.minor version 51.0(jdk版本错误)
oloz
java
java.lang.UnsupportedClassVersionError: cn/support/cache/CacheType : Unsupported major.minor version 51.0 (unable to load class cn.support.cache.CacheType)
at org.apache.catalina.loader.WebappClassL
- 用多个线程处理1个List集合
362217990
多线程threadlist集合
昨天发了一个提问,启动5个线程将一个List中的内容,然后将5个线程的内容拼接起来,由于时间比较急迫,自己就写了一个Demo,希望对菜鸟有参考意义。。
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.CountDownLatch;
public c
- JSP简单访问数据库
香水浓
sqlmysqljsp
学习使用javaBean,代码很烂,仅为留个脚印
public class DBHelper {
private String driverName;
private String url;
private String user;
private String password;
private Connection connection;
privat
- Flex4中使用组件添加柱状图、饼状图等图表
AdyZhang
Flex
1.添加一个最简单的柱状图
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
<?xml version=
"1.0"&n
- Android 5.0 - ProgressBar 进度条无法展示到按钮的前面
aijuans
android
在低于SDK < 21 的版本中,ProgressBar 可以展示到按钮前面,并且为之在按钮的中间,但是切换到android 5.0后进度条ProgressBar 展示顺序变化了,按钮再前面,ProgressBar 在后面了我的xml配置文件如下:
[html]
view plain
copy
<RelativeLa
- 查询汇总的sql
baalwolf
sql
select list.listname, list.createtime,listcount from dream_list as list , (select listid,count(listid) as listcount from dream_list_user group by listid order by count(
- Linux du命令和df命令区别
BigBird2012
linux
1,两者区别
du,disk usage,是通过搜索文件来计算每个文件的大小然后累加,du能看到的文件只是一些当前存在的,没有被删除的。他计算的大小就是当前他认为存在的所有文件大小的累加和。
- AngularJS中的$apply,用还是不用?
bijian1013
JavaScriptAngularJS$apply
在AngularJS开发中,何时应该调用$scope.$apply(),何时不应该调用。下面我们透彻地解释这个问题。
但是首先,让我们把$apply转换成一种简化的形式。
scope.$apply就像一个懒惰的工人。它需要按照命
- [Zookeeper学习笔记十]Zookeeper源代码分析之ClientCnxn数据序列化和反序列化
bit1129
zookeeper
ClientCnxn是Zookeeper客户端和Zookeeper服务器端进行通信和事件通知处理的主要类,它内部包含两个类,1. SendThread 2. EventThread, SendThread负责客户端和服务器端的数据通信,也包括事件信息的传输,EventThread主要在客户端回调注册的Watchers进行通知处理
ClientCnxn构造方法
&
- 【Java命令一】jmap
bit1129
Java命令
jmap命令的用法:
[hadoop@hadoop sbin]$ jmap
Usage:
jmap [option] <pid>
(to connect to running process)
jmap [option] <executable <core>
(to connect to a
- Apache 服务器安全防护及实战
ronin47
此文转自IBM.
Apache 服务简介
Web 服务器也称为 WWW 服务器或 HTTP 服务器 (HTTP Server),它是 Internet 上最常见也是使用最频繁的服务器之一,Web 服务器能够为用户提供网页浏览、论坛访问等等服务。
由于用户在通过 Web 浏览器访问信息资源的过程中,无须再关心一些技术性的细节,而且界面非常友好,因而 Web 在 Internet 上一推出就得到
- unity 3d实例化位置出现布置?
brotherlamp
unity教程unityunity资料unity视频unity自学
问:unity 3d实例化位置出现布置?
答:实例化的同时就可以指定被实例化的物体的位置,即 position
Instantiate (original : Object, position : Vector3, rotation : Quaternion) : Object
这样你不需要再用Transform.Position了,
如果你省略了第二个参数(
- 《重构,改善现有代码的设计》第八章 Duplicate Observed Data
bylijinnan
java重构
import java.awt.Color;
import java.awt.Container;
import java.awt.FlowLayout;
import java.awt.Label;
import java.awt.TextField;
import java.awt.event.FocusAdapter;
import java.awt.event.FocusE
- struts2更改struts.xml配置目录
chiangfai
struts.xml
struts2默认是读取classes目录下的配置文件,要更改配置文件目录,比如放在WEB-INF下,路径应该写成../struts.xml(非/WEB-INF/struts.xml)
web.xml文件修改如下:
<filter>
<filter-name>struts2</filter-name>
<filter-class&g
- redis做缓存时的一点优化
chenchao051
redishadooppipeline
最近集群上有个job,其中需要短时间内频繁访问缓存,大概7亿多次。我这边的缓存是使用redis来做的,问题就来了。
首先,redis中存的是普通kv,没有考虑使用hash等解结构,那么以为着这个job需要访问7亿多次redis,导致效率低,且出现很多redi
- mysql导出数据不输出标题行
daizj
mysql数据导出去掉第一行去掉标题
当想使用数据库中的某些数据,想将其导入到文件中,而想去掉第一行的标题是可以加上-N参数
如通过下面命令导出数据:
mysql -uuserName -ppasswd -hhost -Pport -Ddatabase -e " select * from tableName" > exportResult.txt
结果为:
studentid
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
先下载PHPEXCEL类文件,放在class目录下面,然后新建一个index.php文件,内容如下
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('
- 爱情格言
dcj3sjt126com
格言
1) I love you not because of who you are, but because of who I am when I am with you. 我爱你,不是因为你是一个怎样的人,而是因为我喜欢与你在一起时的感觉。 2) No man or woman is worth your tears, and the one who is, won‘t
- 转 Activity 详解——Activity文档翻译
e200702084
androidUIsqlite配置管理网络应用
activity 展现在用户面前的经常是全屏窗口,你也可以将 activity 作为浮动窗口来使用(使用设置了 windowIsFloating 的主题),或者嵌入到其他的 activity (使用 ActivityGroup )中。 当用户离开 activity 时你可以在 onPause() 进行相应的操作 。更重要的是,用户做的任何改变都应该在该点上提交 ( 经常提交到 ContentPro
- win7安装MongoDB服务
geeksun
mongodb
1. 下载MongoDB的windows版本:mongodb-win32-x86_64-2008plus-ssl-3.0.4.zip,Linux版本也在这里下载,下载地址: http://www.mongodb.org/downloads
2. 解压MongoDB在D:\server\mongodb, 在D:\server\mongodb下创建d
- Javascript魔法方法:__defineGetter__,__defineSetter__
hongtoushizi
js
转载自: http://www.blackglory.me/javascript-magic-method-definegetter-definesetter/
在javascript的类中,可以用defineGetter和defineSetter_控制成员变量的Get和Set行为
例如,在一个图书类中,我们自动为Book加上书名符号:
function Book(name){
- 错误的日期格式可能导致走nginx proxy cache时不能进行304响应
jinnianshilongnian
cache
昨天在整合某些系统的nginx配置时,出现了当使用nginx cache时无法返回304响应的情况,出问题的响应头: Content-Type:text/html; charset=gb2312 Date:Mon, 05 Jan 2015 01:58:05 GMT Expires:Mon , 05 Jan 15 02:03:00 GMT Last-Modified:Mon, 05
- 数据源架构模式之行数据入口
home198979
PHP架构行数据入口
注:看不懂的请勿踩,此文章非针对java,java爱好者可直接略过。
一、概念
行数据入口(Row Data Gateway):充当数据源中单条记录入口的对象,每行一个实例。
二、简单实现行数据入口
为了方便理解,还是先简单实现:
<?php
/**
* 行数据入口类
*/
class OrderGateway {
/*定义元数
- Linux各个目录的作用及内容
pda158
linux脚本
1)根目录“/” 根目录位于目录结构的最顶层,用斜线(/)表示,类似于
Windows
操作系统的“C:\“,包含Fedora操作系统中所有的目录和文件。 2)/bin /bin 目录又称为二进制目录,包含了那些供系统管理员和普通用户使用的重要
linux命令的二进制映像。该目录存放的内容包括各种可执行文件,还有某些可执行文件的符号连接。常用的命令有:cp、d
- ubuntu12.04上编译openjdk7
ol_beta
HotSpotjvmjdkOpenJDK
获取源码
从openjdk代码仓库获取(比较慢)
安装mercurial Mercurial是一个版本管理工具。 sudo apt-get install mercurial
将以下内容添加到$HOME/.hgrc文件中,如果没有则自己创建一个: [extensions] forest=/home/lichengwu/hgforest-crew/forest.py fe
- 将数据库字段转换成设计文档所需的字段
vipbooks
设计模式工作正则表达式
哈哈,出差这么久终于回来了,回家的感觉真好!
PowerDesigner的物理数据库一出来,设计文档中要改的字段就多得不计其数,如果要把PowerDesigner中的字段一个个Copy到设计文档中,那将会是一件非常痛苦的事情。