这条理由我也听过很多,我发现它过于简化了 CPython 的实际工作原理。当你在终端上写 python myscript.py 时,CPython 会启动一长串操作,包括读取、词法分析、语法分析、编译、解释以及执行。
如果你对这些过程感兴趣,可以看看我之前写的文章:
6分钟修改Python语言:https://hackernoon.com/modifying-the-python-language-in-7-minutes-b94b0a99ce14
这个过程的重点就是它会在编译阶段生成.pyc文件,字节码会写到__pycache__/下的文件中(如果是Python 3),或者写到与源代码同一个目录中(Python 2)。不仅你编写的脚本是这样,所有你导入的代码都是这样,包括第三方模块。
因此绝大多数情况下(除非你写的代码只会运行一次),Python是在解释字节码并在本地执行。与Java和C#.NET比较一下:
Java将源代码编译成“中间语言”,然后Java虚拟机读取字节码并即时编译成机器码。.NET CIL也是一样的,.NET的公共语言运行时(CLR)使用即时编译将字节码编译成机器码。
那么,既然它们都使用虚拟机,以及某种字节码,为什么Python在性能测试中比Java和C#慢那么多?第一个原因是,.NET和Java是即时编译的(JIT)。
即时编译,即JIT(Just-in-time),需要一种中间语言,将代码分割成小块(或者称帧)。而提前编译(Ahead of Time,简称AOT)是编译器把源代码翻译成CPU能理解的代码之后再执行。
JIT本身并不能让执行更快,因为它执行的是同样的字节码序列。但是,JIT可以在运行时做出优化。好的GIT优化器能找到应用程序中执行最多的部分,称为“热点”。然后对那些字节码进行优化,将它们替换成效率更高的代码。
这就是说,如果你的应用程序会反复做某件事情,那么速度就会快很多。此外,别忘了Java和C#都是强类型语言,所以优化器可以对代码做更多的假设。
前面说过,PyPy有个JIT,因此它比CPython要快很多。下面这篇性能测试的文章介绍得更详细:
哪个版本的Python最快?https://hackernoon.com/which-is-the-fastest-version-of-python-2ae7c61a6b2b
JIT也有缺点:首先就是启动速度。CPython的启动速度已经比较慢了,而PyPy的启动速度要比CPython慢两到三倍。Java虚拟机的启动速度也是出了名的慢。.NET CLR在系统启动时启动,因此避免了这个问题,但这要归功于CLR和操作系统是同一拨开发者开发的。
如果你有一个Python进程需要运行很长时间,而且代码里包含“热点”可以被优化,那么使用JIT就很不错。
但是,CPython是个通用的实现。因此如果要用Python开发命令行程序,那么每次都要等待JIT调用CLI就特别慢了。
CPython试图满足大部分情况下的需求。有一个在CPython中实现JIT(https://www.slideshare.net/AnthonyShaw5/pyjion-a-jit-extension-system-for-cpython)的项目,不过这个项目已经停止很久了。
如果你想要享受JIT的好处,并且要处理的任务适合JIT,那就使用PyPy。