图像的二值化,就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出只有黑白的视觉效果。
一幅图像包括目标物体、背景和噪声,要想从多值的数字图像中直接提取出目标物体,常用的方法就是设定一个阈值 T,用 T 将图像的数据分成两个部分: 大于 T 的像素群和小于 T 的像素群。这是研究灰度变换的特殊方法,称为图像的二值化(Binarization)。
Python-OpenCV 中提高阈值函数:
cv2.threshold (src, threshold, maxValue, method)
# src : 源图
# threshold : 设定的阈值
# maxValue : 设定的最大值
# method : 阈值化的方法
# cv2.THRESH_BINARY
# cv2.THRESH_BINARY_INV
# cv2.THRESH_TRUNC
# cv2.THRESH_TOZERO
# cv2.THRESH_TOZERO_INV
src 源图:实线表示原始数据;虚线便是设定的阈值
cv2.THRESH_BINARY:大于阈值的像素点灰度值设定为 maxValue (如8位灰度值最大为255),灰度值小于阈值的像素点的灰度值设定为0。
cv2.THRESH_BINARY_INV: 大于阈值的像素点的灰度值设定为0,而小于阈值的像素点的灰度值设定为 maxValue。
cv2.THRESH_TRUNC:像素点的灰度值小于阈值不改变,大于阈值的灰度值的像素点设定为该阈值。
cv2.THRESH_TOZERO:像素点的灰度值小于该阈值的不进行任何改变,而大于该阈值的部分,其灰度值全部变为0。
cv2.THRESH_TOZERO_INV: 像素点的灰度值大于该阈值的不进行任何改变,像素点的灰度值小于该阈值的,其灰度值全部变为0。
示例:
#! user/bin/env python3
# -*- coding: utf-8 -*-
# @filename: binrization.py
# @author: yang
import cv2
import numpy as np
from matplotlib import pyplot as plt
def readPic():
img = cv2.imread('1.jpg')
img_resize = cv2.resize(img, (0, 0), fx=0.1, fy=0.1, interpolation=cv2.INTER_NEAREST)
img_gray = cv2.cvtColor(img_resize, cv2.COLOR_BGR2GRAY)
return img_gray
def getPicMinRect(img):
GrayImage = img
ret, thresh1 = cv2.threshold(GrayImage, 10, 200, cv2.THRESH_BINARY)
ret, thresh2 = cv2.threshold(GrayImage, 10, 200, cv2.THRESH_BINARY_INV)
ret, thresh3 = cv2.threshold(GrayImage, 10, 200, cv2.THRESH_TRUNC)
ret, thresh4 = cv2.threshold(GrayImage, 10, 200, cv2.THRESH_TOZERO)
ret, thresh5 = cv2.threshold(GrayImage, 10, 200, cv2.THRESH_TOZERO_INV)
titles = ['Gray Image', 'BINARY', 'BINARY_INV', 'TRUNC', 'TOZERO', 'TOZERO_INV']
images = [GrayImage, thresh1, thresh2, thresh3, thresh4, thresh5]
for i in range(6):
plt.subplot(2, 3, i + 1)
plt.imshow(images[i], 'gray')
plt.title(titles[i])
plt.xticks([]), plt.yticks([])
plt.show()
return 0
if __name__ =="__main__":
img = readPic()
getPicMinRect(img)
输出图片:
当同一幅图像上的不同部分具有不同亮度时,这种情况下我们采用自适应阈值。此时的阈值是根据图像上的每一个小区域计算与其对应的阈值。因此在同一幅图像上的不同区域采用不同的阈值,从而使我们在亮度不同的情况下得到更好的结果。
Python-OpenCV 中提供的自适应阈值函数:
cv2.adaptiveThreshold(src, maxValue, adaptive_method, threshold_type, block_size, param1)
# threshold : 就有两种选择 CV_THRESH_BINARY, CV_THRESH_BINARY_INV
# adaptive_method : 也只有两种选择 CV_ADAPTIVE_THRESH_MEAN_C, CV_ADAPTIVE_THRESH_GAUSSIAN_C
函数 cvAdaptiveThreshold 将灰度图像变换到二值图像,采用的公式:
switch(threshold_type):
case CV_THRESH_BINARY:
if src(x,y)>T(x,y):
dst(x,y) = maxValue
else:
dsy(x,y) = 0
case CV_THRESH_BINARY_INV:
if src(x,y)>T(x,y):
dst(x,y) = 0
else:
dsy(x,y) = maxValue
# 其中 T(x,y)为当前像素点单独计算的阈值
# 对方法 CV_ADAPTIVE_THRESH_MEAN_C,先求出block中的均值,再减掉param1。
# 对方法 CV_ADAPTIVE_THRESH_GAUSSIAN_C ,先求出block中的加权和(gaussian),再减掉param1。
示例:
#! user/bin/env python3
# -*- coding: utf-8 -*-
# @filename: binrization.py
# @author: yang
import cv2
import numpy as np
from matplotlib import pyplot as plt
def readPic():
img = cv2.imread('1.jpg')
img_resize = cv2.resize(img, (0, 0), fx=0.1, fy=0.1, interpolation=cv2.INTER_NEAREST)
img_gray = cv2.cvtColor(img_resize, cv2.COLOR_BGR2GRAY)
return img_gray
def getPic(img):
GrayImage = img
th1 = cv2.adaptiveThreshold(GrayImage,255,cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY,3,5)
th2 = cv2.adaptiveThreshold(GrayImage,255,cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY,3,50)
th3 = cv2.adaptiveThreshold(GrayImage,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY,3,5)
th4 = cv2.adaptiveThreshold(GrayImage,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY,3,50)
titles = ['Gray Image', 'Adaptive Mean prama1=5',
'Adaptive Mean prama1=50', 'Adaptive Gaussian prama1=5','Adaptive Gaussian prama1=50']
images = [GrayImage, th1, th2, th3, th4]
for i in range(5):
plt.subplot(2,3,i+1),plt.imshow(images[i])
plt.title(titles[i])
plt.xticks([]),plt.yticks([])
plt.show()
if __name__ =="__main__":
img = readPic()
getPic(img)
输出图像: