- 遗传进化算法进行高效特征选择
广东数字化转型
算法人工智能
在构建机器学习模型时,特征选择是一个关键的预处理步骤。使用全部特征往往会导致过拟合、增加计算复杂度等问题。因此,我们需要从原始特征集中选择一个最优子集,以提高模型的泛化性能和效率。特征选择的目标是找到一个二元掩码向量,对应每个特征的保留(1)或剔除(0)。例如,对于10个特征,这个掩码向量可能是[1,0,1,1,0,0,1,0,1,0]。我们需要通过某种优化方法,寻找一个使目标函数(如模型的贝叶斯
- 遗传算法与深度学习实战(7)——使用遗传算法解决N皇后问题
盼小辉丶
遗传算法与深度学习实战深度学习DEAP遗传算法
遗传算法与深度学习实战(7)——使用遗传算法解决N皇后问题0.前言1.N皇后问题2.解的表示3.遗传算法解决N皇后问题小结系列链接0.前言进化算法(EvolutionaryAlgorithm,EA)和遗传算法(GeneticAlgorithms,GA)已成功解决了许多复杂的设计和布局问题,部分原因是它们采用了受控随机元素的搜索。这通常使得使用EA或GA设计的系统能够超越我们的理解进行创新。在本节中
- 利用多目标粒子群优化(MOPSO)算法对全加器中的晶体管大小进行重新调整以达到功率优化:详细步骤与Python实现
快撑死的鱼
python算法解析算法python开发语言
简介:随着技术的不断进步,微电子行业始终追求在保持性能的同时降低功率消耗。全加器作为数字电路中的基本元素,其功率优化显得尤为关键。本文将详细介绍如何使用一种称为多目标粒子群优化(MOPSO)的进化算法,重新调整晶体管的大小,以优化全加器中的功率。此外,我们还将提供Python代码实现,供读者参考和使用。具体的项目实现过程,我们已经准备了一个完整的项目文件,您可以下载以获取更多细节。1.多目标粒子群
- MATLAB:差分进化算法(Differential Evolution Algorithm,DE)求解基于移动边缘计算的任务卸载与资源调度(提供MATLAB代码)
优化算法MATLAB与Python
优化算法MATLABmatlab算法边缘计算人工智能开发语言
一、优化模型介绍移动边缘计算中的计算卸载是一种将计算任务从设备卸载到边缘服务器的技术。它可以将计算量大的任务分配给计算资源充足的代理服务器进行处理,从而减轻设备的计算负担,延长设备的电池寿命,并满足业务时延需求。计算卸载的过程一般包括以下几个步骤:任务划分:将计算任务划分为多个子任务,以便在边缘服务器上并行处理。任务调度:根据任务的特性和边缘服务器的资源情况,选择合适的边缘服务器来执行任务。数据传
- 多目标优化(Python):多目标粒子群优化算法(MOPSO)求解ZDT1、ZDT2、ZDT3、ZDT4、ZDT6(提供Python代码)
优化算法MATLAB与Python
Python优化算法python算法开发语言人工智能强化学习
一、多目标粒子群优化算法多目标粒子群优化算法(MOPSO)是一种用于解决多目标优化问题的进化算法。它基于粒子群优化算法(PSO),通过引入多个目标函数和非支配排序来处理多目标问题。MOPSO的基本思想是将问题转化为在多维搜索空间中寻找一组最优解的问题。每个解被称为一个粒子,它在搜索空间中移动,并根据自身的经验和群体的经验进行调整。粒子的位置表示解的候选解,速度表示解的搜索方向和步长。MOPSO的算
- 遗传算法 (Genetic Algorithm, GA) 详解与实现
安替-AnTi
机器学习GA遗传算法
文章目录基本思想基本概念基本操作算法基本步骤代码实现参考文献基本思想遗传算法(GeneticAlgorithm,GA)是一种进化算法,其基本原理是仿效生物界中的“物竞天择、适者生存”的演化法则,它最初由美国Michigan大学的J.Holland教授于1967年提出。遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(
- 论文阅读:An interactive method for surrogate-assisted multi-objective evolutionary algorithms
还是要努力呀!
论文阅读论文阅读多目标优化交互式
Aninteractivemethodforsurrogate-assistedmulti-objectiveevolutionaryalgorithms辅助代理多目标进化算法的交互式方法作者:DinhNguyenDuc、LongNguyen、KienThaiTrung期刊:IEEEInternationalConferenceonKNOWLEDGEANDSYSTEMS、November2020D
- 粒子群优化算法简介
月下香
优化算法算法
粒子群优化算法简介01算法基本思想02算法步骤03重要参数与更新公式04编程实现05高级特性约束处理多目标优化混沌搜索群体拓扑结构自适应参数调整06总结重要参考文献粒子群优化(ParticleSwarmOptimization,简称PSO)是一种用于求解连续优化问题的进化算法,最早由Kennedy和Eberhart于1995年提出,灵感来源于鸟群觅食和鱼群觅食的行为。01算法基本思想PSO算法将待
- SHADE和SaDE跑CEC2017测试集
树洞优码
算法改进优化算法差分进化算法改进差分进化算法
SHADE和SaDE跑CEC2017测试集对比图,并分别连续运行30次并且输出最优值,最差值,平均值,标准差基于成功历史的参数自适应差分进化算法(SHADE)是经典的差分进化变体,该论文发表于2013年,性能非常有参考价值,可用于和其他算法进行对比试验,该算法尤其是在CEC测试集上有着优秀的表现,将此算法用作对比算法,可以极大增强试验的说服力。提升论文被录用的概率。参考文献:RyojiTanabe
- 自适应差分进化算法(SaDE)优化BP神经网络
树洞优码
算法神经网络人工智能自适应差分进化算法
自适应差分进化算法(SaDE)优化BP神经网络自适应差分进化算法(SaDE)可以用于优化神经网络中的参数,包括神经网络的权重和偏置。在优化BP神经网络中,SaDE可以帮助找到更好的权重和偏置的组合,以提高神经网络的性能。在BP神经网络中,SaDE主要用于调整网络的权重和偏置。通过SaDE算法,可以在权衡探索和利用的过程中,更有效地搜索到神经网络的参数组合,以降低误差、提高分类准确率或者加速网络收敛
- 基于差分进化算法的移动边缘计算的任务卸载与资源调度(提供MATLAB代码)
IT猿手
优化算法单目标应用MATLAB算法边缘计算matlab进化计算优化算法人工智能
一、优化模型介绍移动边缘计算的任务卸载与资源调度是指在移动设备和边缘服务器之间,将部分计算任务从移动设备卸载到边缘服务器,并合理分配资源以提高系统性能和降低能耗。在本文所研究的区块链网络中,优化的变量为:挖矿决策(即m)和资源分配(即p和f),目标函数是使所有矿工的总利润最大化。问题可以表述为:maxm,p,fFminer=∑i∈N′Fiminers.t.C1:mi∈{0,1},∀i∈NC2:p
- 基于差分进化算法(Differential Evolution Algorithm,DE)的移动边缘计算的任务卸载与资源调度研究(提供MATLAB代码)
IT猿手
优化算法MATLAB算法边缘计算matlab深度强化学习强化学习人工智能python
一、优化模型介绍移动边缘计算的任务卸载与资源调度是指在移动设备和边缘服务器之间,将部分计算任务从移动设备卸载到边缘服务器,并合理分配资源以提高系统性能和降低能耗。在本文所研究的区块链网络中,优化的变量为:挖矿决策(即m)和资源分配(即p和f),目标函数是使所有矿工的总利润最大化。问题可以表述为:maxm,p,fFminer=∑i∈N′Fiminers.t.C1:mi∈{0,1},∀i∈NC2:p
- 基于差分进化算法的移动边缘计算 (MEC) 的资源调度分配优化(提供MATLAB代码)
优化算法MATLAB与Python
MATLAB优化算法算法边缘计算matlab人工智能
一、优化模型简介在所研究的区块链网络中,优化的变量为:挖矿决策(即m)和资源分配(即p和f),目标函数是使所有矿工的总利润最大化。问题可以表述为:maxm,p,fFminer=∑i∈N′Fiminers.t.C1:mi∈{0,1},∀i∈NC2:pmin≤pi≤pmax,∀i∈N′C3:fmin≤fi≤fmax,∀i∈N′C4:∑i∈N′fi≤ftotalC5:FMSP≥0C6:Tit+
- 差分进化算法求解基于移动边缘计算 (MEC) 的无线区块链网络的联合挖矿决策和资源分配(提供MATLAB代码)
IT猿手
单目标应用优化算法算法边缘计算区块链matlab人工智能优化算法强化学习
一、优化模型介绍在所研究的区块链网络中,优化的变量为:挖矿决策(即m)和资源分配(即p和f),目标函数是使所有矿工的总利润最大化。问题可以表述为:maxm,p,fFminer=∑i∈N′Fiminers.t.C1:mi∈{0,1},∀i∈NC2:pmin≤pi≤pmax,∀i∈N′C3:fmin≤fi≤fmax,∀i∈N′C4:∑i∈N′fi≤ftotalC5:FMSP≥0C6:Tit+
- 思维训练营 笔记3
享受孤独的猫
九、选择:反馈最后会把你带到陷阱狐狸是精致的利己主义者,是反馈性学习的典范。反馈学习注意事项:1)从自己的经验中学习;2)模仿,向成功者学习;3)进化算法,物竞天择,适者生存。适应性学习的共同陷阱是短视,只注重眼前的机会和威胁,而忽略了未来的机会和威胁。适应性学习是从历史记录中学习,而不是从历史的所有可能中学习。它只能许锡已经发生的事情,而不能学习有可能但没有发生的事情。注定缺乏应对剧烈变化的想象
- 2024年美赛数学建模思路 - 案例:粒子群算法
建模君A
算法
文章目录1什么是粒子群算法?2举个例子3还是一个例子算法流程算法实现建模资料#0赛题思路(赛题出来以后第一时间在CSDN分享)https://blog.csdn.net/dc_sinor?type=blog1什么是粒子群算法?粒子群算法(ParticleSwarmOptimization,PSO)是一种模仿鸟群、鱼群觅食行为发展起来的一种进化算法。其概念简单易于编程实现且运行效率高、参数相对较少,
- 2024美赛数学建模思路 - 案例:粒子群算法
建模君Assistance
算法2024美赛美国大学生数学建模建模思路
文章目录1什么是粒子群算法?2举个例子3还是一个例子算法流程算法实现建模资料#0赛题思路(赛题出来以后第一时间在CSDN分享)https://blog.csdn.net/dc_sinor?type=blog1什么是粒子群算法?粒子群算法(ParticleSwarmOptimization,PSO)是一种模仿鸟群、鱼群觅食行为发展起来的一种进化算法。其概念简单易于编程实现且运行效率高、参数相对较少,
- 2024年美国大学生数学建模思路 - 案例:粒子群算法
m0_71450098
算法
文章目录1什么是粒子群算法?2举个例子3还是一个例子算法流程算法实现建模资料#0赛题思路(赛题出来以后第一时间在CSDN分享)https://blog.csdn.net/dc_sinor?type=blog1什么是粒子群算法?粒子群算法(ParticleSwarmOptimization,PSO)是一种模仿鸟群、鱼群觅食行为发展起来的一种进化算法。其概念简单易于编程实现且运行效率高、参数相对较少,
- Hardware-Aware-Transformers开源项目笔记
清风2022
NAStransformerNLP
文章目录Hardware-Aware-Transformers开源项目笔记开源项目背景知识nas进化算法进化算法代码示例开源项目EvolutionarySearch1生成延迟的数据集2训练延迟预测器3使延时约束运行搜索算法4.训练搜索得到的subTransformer5.根据重训练后的submodel得到BLEU精度值代码结构分析Hardware-Aware-Transformers开源项目笔记开
- 卢悦丹:对付拖延,算法告诉你需要成长思维
卢悦丹拖延症
战胜拖延找卢悦丹最近我思考进化和成长,原来是相通的,与你分享一下。1、所谓进化算法过去我的学习和工作,与算法接触很多,细细思考总结了一下,原来所有的算法都有一个最简单的逻辑,那就是积分和迭代。所有的智能学习算法,和大部分普通算法,都可以由这两个关键字搞定!下面我来为你具体分析一下。用算法解决任何一个问题,就是在解空间范围内,找到最优解,让目标函数取值最大。比如下图,我们的目标是三角形的地方。初始位
- CMA-ES 算法初探
UQI-LIUWJ
演化学习机器学习算法人工智能矩阵
1进化算法在学习最优模型参数的时候,梯度下降并不是唯一的选择。在我们不知道目标函数的精确解析或者不能直接计算梯度的情况下,进化算法是有效的。进化算法的灵感来源于自然选择,具有有利于生存的特征的个体可以世代生存,并将好的特性传给下一代;具有不利于生存的特正的个体则会被不断淘汰,最后减少甚至消失。进化是在选择过程中逐渐发生的,进化使得种群可以更好地适应环境。下面这张图可以很好地解释进化算法的想法,一开
- 【智能优化算法】协方差矩阵自适应进化算法CMAES附matlab代码
前程算法matlab屋
算法矩阵matlab线性代数开发语言
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。内容介绍智能优化算法在解决复杂问题和优化函数方面发挥着重要作用。其中,协方差矩阵自适应进化算法(CovarianceMatrixAdaptationEvolutionStrategy,简称CMA-ES)是一种高效的优化算法。本文将详细介绍CMA-ES算法
- 基于强化学习的机器人路径寻优
kk的blog;
机器人机器人
文章目录前言一、需要构建一个怎样的机器人?二、使用差分进化算法辨识逆运动学的解三、基于强化学习的机械臂末端运动四、代码五、总结前言提示:这里可以添加本文要记录的大概内容:记录以前上课时学习的一些知识本文需要掌握的一些前置知识:1.机器人的D-H建模2.机器人的正运动学3.机器人的逆运动学4.强化学习5.差分进化算法下面,我们围绕上述五点,进行详细的讲解。提示:以下是本篇文章正文内容,下面案例可供参
- ## 混沌大学——2019年度大课笔记
胡一凡_非暴教练
混沌大学——2019年度大课笔记【主题】哲科摇滚·点亮创新6月22日——科学点亮创新·达尔文进化论Part1:进化算法【关键词】生命、破界【开场白】创新发展:人口红利、互联网红利、全球化红利可能都将消失殆尽,未来是「创新红利」的时代。企业不创新是等死,而创新可能是‘找死’。1.学习的要点:上课时,除了听取吸收,更要去寻找到那些能Touch到你的‘草莓’,从而点悟自己的灵魂。2.为什么要谈生物学?因
- 【BP回归预测】基于差分进化算法优化BP神经网络实现数据预测附matlab代码
Matlab科研辅导帮
预测模型算法回归神经网络
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机内容介绍1.概述BP神经网络是一种常用的前馈神经网络,具有强大的非线性映射能力,广泛应用于模式识别、数据预测等
- CEC2017(Python):六种算法(PSO、DBO、HHO、SSA、DE、HHO)求解CEC2017
优化算法MATLAB与Python
Python优化算法cec2017python算法开发语言
一、6种算法简介1、粒子群优化算法PSO2、蜣螂优化算法DBO3、哈里斯鹰优化算法HHO4、麻雀搜索算法SSA5、差分进化算法DE6、哈里斯鹰优化算法HHO二、CEC2017简介参考文献:[1]Awad,N.H.,Ali,M.Z.,Liang,J.J.,Qu,B.Y.,&Suganthan,P.N.(2016).“Problemdefinitionsandevaluationcriteriafor
- 131基于matlab的差分进化算法优化K均值聚类问题
顶呱呱程序
matlab工程应用matlab差分进化算法K均值聚类
基于matlab的差分进化算法优化K均值聚类问题,可调整K参数得到最佳聚类结果。输出聚类可视化图和优化迭代曲线。可替换自己的数据,程序已调通,可直接运行。131matlab差分进化算法K均值聚类(xiaohongshu.com)
- 手推差分进化算法(多目标函数)
Ling_Ze
算法算法python
importnumpyasnpimporttime#定义目标函数(这里以一个简单的二维函数为例)defobjective_function(x):returnx[0]**2+x[1]**2#差分进化算法defdifferential_evolution(objective_function,bounds,population_size=100,max_generations=50,crossove
- 经典算法-遗传算法的python实现
Alex_StarSky
GPT实战系列机器学习遗传算法经典算法pythonGeneticAlg遗传规划算法拟合算法生物进化算法
经典算法-遗传算法的python实现前言本文分享经典的算法:遗传算法受到生物进化理论启发,模拟生物种群的进化过程。遗传算法是一类基于生物进化理论的优化算法,通过模拟生物进化的过程,通过选择、交叉和变异等操作,不断优化解决问题。遗传规划算法(GeneticProgramming,简称GP)作为进化算法的一种,通过演化生成程序或模型来解决问题。使用Python语言实现一个遗传算法。LLM大模型相关文章
- 【路径规划】基于人工蜂群和进化算法的移动机器人路径规划附matlab代码
matlab科研助手
1简介研究机器人路径规划优化问题,机器人工作环境复杂,运动路径上存在许多障碍物.针对提高机器人安全导航性能问题,传统群智能算法存在早熟,搜索效率低等难题,难以获得全局最优路径.为了获得最优机器人运动路径,避免碰撞的发生,提出了一种人工蜂群算法的机器人路径规划方法.首先采用栅格法对机器人工作环境进行建模,然后机器人路径规划目标点作为蜜源,最后蜂群之间信息交换,协作搜索最优机器人运动路径.结果表明,人
- springmvc 下 freemarker页面枚举的遍历输出
杨白白
enumfreemarker
spring mvc freemarker 中遍历枚举
1枚举类型有一个本地方法叫values(),这个方法可以直接返回枚举数组。所以可以利用这个遍历。
enum
public enum BooleanEnum {
TRUE(Boolean.TRUE, "是"), FALSE(Boolean.FALSE, "否");
- 实习简要总结
byalias
工作
来白虹不知不觉中已经一个多月了,因为项目还在需求分析及项目架构阶段,自己在这段
时间都是在学习相关技术知识,现在对这段时间的工作及学习情况做一个总结:
(1)工作技能方面
大体分为两个阶段,Java Web 基础阶段和Java EE阶段
1)Java Web阶段
在这个阶段,自己主要着重学习了 JSP, Servlet, JDBC, MySQL,这些知识的核心点都过
了一遍,也
- Quartz——DateIntervalTrigger触发器
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2208559 一.概述
simpleTrigger 内部实现机制是通过计算间隔时间来计算下次的执行时间,这就导致他有不适合调度的定时任务。例如我们想每天的 1:00AM 执行任务,如果使用 SimpleTrigger,间隔时间就是一天。注意这里就会有一个问题,即当有 misfired 的任务并且恢复执行时,该执行时间
- Unix快捷键
18289753290
unixUnix;快捷键;
复制,删除,粘贴:
dd:删除光标所在的行 &nbs
- 获取Android设备屏幕的相关参数
酷的飞上天空
android
包含屏幕的分辨率 以及 屏幕宽度的最大dp 高度最大dp
TextView text = (TextView)findViewById(R.id.text);
DisplayMetrics dm = new DisplayMetrics();
text.append("getResources().ge
- 要做物联网?先保护好你的数据
蓝儿唯美
数据
根据Beecham Research的说法,那些在行业中希望利用物联网的关键领域需要提供更好的安全性。
在Beecham的物联网安全威胁图谱上,展示了那些可能产生内外部攻击并且需要通过快速发展的物联网行业加以解决的关键领域。
Beecham Research的技术主管Jon Howes说:“之所以我们目前还没有看到与物联网相关的严重安全事件,是因为目前还没有在大型客户和企业应用中进行部署,也就
- Java取模(求余)运算
随便小屋
java
整数之间的取模求余运算很好求,但几乎没有遇到过对负数进行取模求余,直接看下面代码:
/**
*
* @author Logic
*
*/
public class Test {
public static void main(String[] args) {
// TODO A
- SQL注入介绍
aijuans
sql注入
二、SQL注入范例
这里我们根据用户登录页面
<form action="" > 用户名:<input type="text" name="username"><br/> 密 码:<input type="password" name="passwor
- 优雅代码风格
aoyouzi
代码
总结了几点关于优雅代码风格的描述:
代码简单:不隐藏设计者的意图,抽象干净利落,控制语句直截了当。
接口清晰:类型接口表现力直白,字面表达含义,API 相互呼应以增强可测试性。
依赖项少:依赖关系越少越好,依赖少证明内聚程度高,低耦合利于自动测试,便于重构。
没有重复:重复代码意味着某些概念或想法没有在代码中良好的体现,及时重构消除重复。
战术分层:代码分层清晰,隔离明确,
- 布尔数组
百合不是茶
java布尔数组
androi中提到了布尔数组;
布尔数组默认的是false, 并且只会打印false或者是true
布尔数组的例子; 根据字符数组创建布尔数组
char[] c = {'p','u','b','l','i','c'};
//根据字符数组的长度创建布尔数组的个数
boolean[] b = new bool
- web.xml之welcome-file-list、error-page
bijian1013
javaweb.xmlservleterror-page
welcome-file-list
1.定义:
<welcome-file-list>
<welcome-file>login.jsp</welcome>
</welcome-file-list>
2.作用:用来指定WEB应用首页名称。
error-page1.定义:
<error-page&g
- richfaces 4 fileUpload组件删除上传的文件
sunjing
clearRichfaces 4fileupload
页面代码
<h:form id="fileForm"> <rich:
- 技术文章备忘
bit1129
技术文章
Zookeeper
http://wenku.baidu.com/view/bab171ffaef8941ea76e05b8.html
http://wenku.baidu.com/link?url=8thAIwFTnPh2KL2b0p1V7XSgmF9ZEFgw4V_MkIpA9j8BX2rDQMPgK5l3wcs9oBTxeekOnm5P3BK8c6K2DWynq9nfUCkRlTt9uV
- org.hibernate.hql.ast.QuerySyntaxException: unexpected token: on near line 1解决方案
白糖_
Hibernate
文章摘自:http://blog.csdn.net/yangwawa19870921/article/details/7553181
在编写HQL时,可能会出现这种代码:
select a.name,b.age from TableA a left join TableB b on a.id=b.id
如果这是HQL,那么这段代码就是错误的,因为HQL不支持
- sqlserver按照字段内容进行排序
bozch
按照内容排序
在做项目的时候,遇到了这样的一个需求:
从数据库中取出的数据集,首先要将某个数据或者多个数据按照地段内容放到前面显示,例如:从学生表中取出姓李的放到数据集的前面;
select * fro
- 编程珠玑-第一章-位图排序
bylijinnan
java编程珠玑
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.io.Writer;
import java.util.Random;
public class BitMapSearch {
- Java关于==和equals
chenbowen00
java
关于==和equals概念其实很简单,一个是比较内存地址是否相同,一个比较的是值内容是否相同。虽然理解上不难,但是有时存在一些理解误区,如下情况:
1、
String a = "aaa";
a=="aaa";
==> true
2、
new String("aaa")==new String("aaa
- [IT与资本]软件行业需对外界投资热情保持警惕
comsci
it
我还是那个看法,软件行业需要增强内生动力,尽量依靠自有资金和营业收入来进行经营,避免在资本市场上经受各种不同类型的风险,为企业自主研发核心技术和产品提供稳定,温和的外部环境...
如果我们在自己尚未掌握核心技术之前,企图依靠上市来筹集资金,然后使劲往某个领域砸钱,然
- oracle 数据块结构
daizj
oracle块数据块块结构行目录
oracle 数据块是数据库存储的最小单位,一般为操作系统块的N倍。其结构为:
块头--〉空行--〉数据,其实际为纵行结构。
块的标准大小由初始化参数DB_BLOCK_SIZE指定。具有标准大小的块称为标准块(Standard Block)。块的大小和标准块的大小不同的块叫非标准块(Nonstandard Block)。同一数据库中,Oracle9i及以上版本支持同一数据库中同时使用标
- github上一些觉得对自己工作有用的项目收集
dengkane
github
github上一些觉得对自己工作有用的项目收集
技能类
markdown语法中文说明
回到顶部
全文检索
elasticsearch
bigdesk elasticsearch管理插件
回到顶部
nosql
mapdb 支持亿级别map, list, 支持事务. 可考虑做为缓存使用
C
- 初二上学期难记单词二
dcj3sjt126com
englishword
dangerous 危险的
panda 熊猫
lion 狮子
elephant 象
monkey 猴子
tiger 老虎
deer 鹿
snake 蛇
rabbit 兔子
duck 鸭
horse 马
forest 森林
fall 跌倒;落下
climb 爬;攀登
finish 完成;结束
cinema 电影院;电影
seafood 海鲜;海产食品
bank 银行
- 8、mysql外键(FOREIGN KEY)的简单使用
dcj3sjt126com
mysql
一、基本概念
1、MySQL中“键”和“索引”的定义相同,所以外键和主键一样也是索引的一种。不同的是MySQL会自动为所有表的主键进行索引,但是外键字段必须由用户进行明确的索引。用于外键关系的字段必须在所有的参照表中进行明确地索引,InnoDB不能自动地创建索引。
2、外键可以是一对一的,一个表的记录只能与另一个表的一条记录连接,或者是一对多的,一个表的记录与另一个表的多条记录连接。
3、如
- java循环标签 Foreach
shuizhaosi888
标签java循环foreach
1. 简单的for循环
public static void main(String[] args) {
for (int i = 1, y = i + 10; i < 5 && y < 12; i++, y = i * 2) {
System.err.println("i=" + i + " y="
- Spring Security(05)——异常信息本地化
234390216
exceptionSpring Security异常信息本地化
异常信息本地化
Spring Security支持将展现给终端用户看的异常信息本地化,这些信息包括认证失败、访问被拒绝等。而对于展现给开发者看的异常信息和日志信息(如配置错误)则是不能够进行本地化的,它们是以英文硬编码在Spring Security的代码中的。在Spring-Security-core-x
- DUBBO架构服务端告警Failed to send message Response
javamingtingzhao
架构DUBBO
废话不多说,警告日志如下,不知道有哪位遇到过,此异常在服务端抛出(服务器启动第一次运行会有这个警告),后续运行没问题,找了好久真心不知道哪里错了。
WARN 2015-07-18 22:31:15,272 com.alibaba.dubbo.remoting.transport.dispatcher.ChannelEventRunnable.run(84)
- JS中Date对象中几个用法
leeqq
JavaScriptDate最后一天
近来工作中遇到这样的两个需求
1. 给个Date对象,找出该时间所在月的第一天和最后一天
2. 给个Date对象,找出该时间所在周的第一天和最后一天
需求1中的找月第一天很简单,我记得api中有setDate方法可以使用
使用setDate方法前,先看看getDate
var date = new Date();
console.log(date);
// Sat J
- MFC中使用ado技术操作数据库
你不认识的休道人
sqlmfc
1.在stdafx.h中导入ado动态链接库
#import"C:\Program Files\Common Files\System\ado\msado15.dll" no_namespace rename("EOF","end")2.在CTestApp文件的InitInstance()函数中domodal之前写::CoIniti
- Android Studio加速
rensanning
android studio
Android Studio慢、吃内存!启动时后会立即通过Gradle来sync & build工程。
(1)设置Android Studio
a) 禁用插件
File -> Settings... Plugins 去掉一些没有用的插件。
比如:Git Integration、GitHub、Google Cloud Testing、Google Cloud
- 各数据库的批量Update操作
tomcat_oracle
javaoraclesqlmysqlsqlite
MyBatis的update元素的用法与insert元素基本相同,因此本篇不打算重复了。本篇仅记录批量update操作的
sql语句,懂得SQL语句,那么MyBatis部分的操作就简单了。 注意:下列批量更新语句都是作为一个事务整体执行,要不全部成功,要不全部回滚。
MSSQL的SQL语句
WITH R AS(
SELECT 'John' as name, 18 as
- html禁止清除input文本输入缓存
xp9802
input
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off"; eg: <input type="text" autocomplete="off" name