视觉检测——双目相机的标定(简单原理+Opencv实现)

深度相机原理揭秘--双目立体视觉

双目相机空间坐标计算:(good)

https://www.cnblogs.com/zyly/p/9373991.html

深度相机原理:

https://blog.csdn.net/electech6/article/details/78526800

上文的博客总结双目相机和单目相机的区别和原理很好,值得学习。 

在这里我总结一下主要是以下几点:

深度相机主要有一下几种:

  • 基于TOF(time of flight)飞行时间测距法--发射反射接收
  • 基于结构光:结构光成像的硬件:1.相机、2.投射器。 原理:1.投射到被测物体表面 2.由单个或多个相机拍摄表面即得的结构光 3.基于三角测量原理,经图像三维解析计算--》三维重建  常见的仪器:kinect
  • 基于双目的立体视觉

我们主要总结下双目立体视觉:

在单目的视野A情况下,点的远近是看不出的,加上视野B我们就可以看出

视觉检测——双目相机的标定(简单原理+Opencv实现)_第1张图片

 而通过相机A、B我们就可以判断三点的远近

在Opencv中我们可以很好的实现双目相机的标定等一系列操作:

  1. 分别校正左相机和右相机,得到他们的内参和畸变系数
  2. 找到左右标定图的内角点坐标,加上三维的世界坐标,加上上面的左右相机内参矩阵和畸变系数,求出双目的标定参数矩阵R、T、E、F(旋转矩阵、平移矩阵、本征矩阵、基础矩阵)
  3. 根据上面的标定结果,对图像进行矫正--------极线约束,矫正后两图像位于同一平面且互相平行
  4. 对矫正后的两张图像进行像素匹配(有很多算法),获得视差图,计算每个图像的深度,获得深度图

左右棋盘图如下:

https://pan.baidu.com/s/1-U_1v6idEKKvTS1Z6_kXig       提取码:0k3u

在Opencv中的代码如下,有详细的注释:

 main.cpp

#include"11.h"

int main() 
{
	
	calibrator calib(LEFT_FOLDER, RIGHT_FOLDER, 1.f, 5, 4);
	
	calib.calc_image_points(true);    //找到左右标定图的角点坐标
	
	bool done = calib.calibrate();    //双目标定计算,并保存stereo_calib.xml,得到 R, T, E, F
		// R– 输出第一和第二相机坐标系之间的旋转矩阵。
		// T– 输出第一和第二相机坐标系之间的旋转矩阵平移向量。
		// E–输出本征矩阵。
		// F–输出基础矩阵。
	                                 
	if (!done) 
	{
		cout << "立体标定失败......." << endl;
	}
	else
	{
		cout << "立体标定成功......." << endl;
	}

	Size image_size(320, 240);
	
	rectifier rec(filename11, image_size);//标定过的摄像机进行校正,stereoRectify(),得到 Rl, Rr, Pl, Pr, Q
	
	//R1– 输出第一个相机的3x3矫正变换(旋转矩阵) .
	//R2– 输出第二个相机的3x3矫正变换(旋转矩阵) .
	//P1–在第一台相机的新的坐标系统(矫正过的)输出 3x4 的投影矩阵
	//P2–在第二台相机的新的坐标系统(矫正过的)输出 3x4 的投影矩阵
	//Q–输出深度视差映射矩阵    
	rec.show_rectified(image_size);

	disparity disp(filename11, image_size);  //SGBM求视差图,进而求解深度图
	disp.show_disparity(image_size);

	system("pause");
	return 0;
}

11.h

#pragma once
// Program illustrate stereo camera calibration
// Author: Samarth Manoj Brahmbhatt, University of Pennsylvania

#include 
#include 
#include 

#define LEFT_FOLDER "./left/"
#define RIGHT_FOLDER "./right/"

#define DATA_FOLDER "./cam_calib/"

#define filename11 "./cam_calib/stereo_calib.xml"

using namespace cv;
using namespace std;



class calibrator 
{
public:
	calibrator(string, string, float, int, int);      //初始化构造函数

	Size get_image_size();                            //获取单张图片的大小

	void calc_image_points(bool);                     //通过检测棋盘格角点计算图像点
	                                                  //得到 l_image_points, r_image_points
	bool calibrate();                                 //双目标定计算
private:
	string l_path, r_path; 

	Mat l_cameraMatrix, l_distCoeffs;
	Mat r_cameraMatrix, r_distCoeffs;
	vector l_images, r_images;

	bool show_chess_corners;
	float side_length;                              //棋盘格的边长
	int width, height;								//棋盘格的内角点数量
	
	vector > l_image_points, r_image_points; 	
	vector > object_points; 
	Mat R, T, E, F;                                    //立体相机参数

};
//////////////////////////////////////////////////////////////////////////////
class rectifier    //立体摄像机校正
{
public:
	rectifier(string, Size);    //constructor
	void show_rectified(Size);  //function to show live rectified feed from stereo camera

private:
	Mat map_l1, map_l2, map_r1, map_r2; //pixel maps for rectification
	string path;

};
//////////////////////////////////////////////////////////////////////////////
class disparity 
{
public:
	disparity(string, Size); //constructor
		
	void show_disparity(Size); // show live disparity by processing stereo camera feed

private:
	Mat map_l1, map_l2, map_r1, map_r2, Q;			 // rectification pixel maps                
	
	int mindisparity = 0;
	int ndisparities = 64;
	int SADWindowSize = 11;

	cv::Ptr sgbm = cv::StereoSGBM::create(mindisparity, ndisparities, SADWindowSize); 
	// 用于视差计算的立体匹配对象

	Mat framel = imread("L.jpg");
	Mat framer = imread("R.jpg");
};

11.cpp

 

#include"11.h"

calibrator::calibrator(string _l_path, string _r_path, float _side_length, int _width, int _height)
{
	side_length = _side_length;
	width = _width;
	height = _height;

	l_path = _l_path;
	r_path = _r_path;
	cout << "左相机的棋盘图位置在:" << _l_path << endl;
	cout << "右相机的棋盘图位置在:" << _r_path << endl;

	// Read images    
	std::vector image_file_L;
	std::vector image_file_R;

	glob(l_path, image_file_L);             //将目录下的文件读取到容器中
	glob(r_path, image_file_R);

	for (int i = 0; i < image_file_L.size(); i++)
	{
		l_images.push_back(imread(image_file_L[i]));
	}

	for (int ii = 0; ii < image_file_R.size(); ii++)
	{
		r_images.push_back(imread(image_file_R[ii]));
	}

}

void calibrator::calc_image_points(bool show)
{
	//计算物体坐标系中的物体点(左上角原点)
	//三维点根据棋盘格边长大小、内角点数量初始化
	vector ob_p;
	for (int i = 0; i < height; i++)
	{
		for (int j = 0; j < width; j++)
		{
			ob_p.push_back(Point3f(j * side_length, i * side_length, 0.f));
		}
	}

	if (show)
	{
		namedWindow("Left Chessboard corners");
		namedWindow("Right Chessboard corners");
	}

	for (int i = 0; i < l_images.size(); i++)
	{
		Mat lim = l_images[i];
		Mat rim = r_images[i];

		vector l_im_p;
		vector r_im_p;   //20个内角点坐标
		bool l_pattern_found = findChessboardCorners(lim, Size(width, height), l_im_p, CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE + CALIB_CB_FAST_CHECK);
		bool r_pattern_found = findChessboardCorners(rim, Size(width, height), r_im_p, CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE + CALIB_CB_FAST_CHECK);
		if (l_pattern_found && r_pattern_found)
		{
			object_points.push_back(ob_p);

			Mat gray;
			cvtColor(lim, gray, CV_BGR2GRAY);
			cornerSubPix(gray, l_im_p, Size(5, 5), Size(-1, -1), TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1));

			cvtColor(rim, gray, CV_BGR2GRAY);
			cornerSubPix(gray, r_im_p, Size(5, 5), Size(-1, -1), TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1));

			l_image_points.push_back(l_im_p);   //  存放20个内角点的容器的容器   31(imgs)*20(points)
			r_image_points.push_back(r_im_p);
			if (show)
			{
				Mat im_show = lim.clone();
				drawChessboardCorners(im_show, Size(width, height), l_im_p, true);
				imshow("Left Chessboard corners", im_show);
				im_show = rim.clone();
				drawChessboardCorners(im_show, Size(width, height), r_im_p, true);
				imshow("Right Chessboard corners", im_show);
				while (char(waitKey(1)) != '\r')
				{

				}
			}
		}
		else
		{
			l_images.erase(l_images.begin() + i);
			r_images.erase(r_images.begin() + i);
		}
	}
}

bool calibrator::calibrate()
{
	string filename = DATA_FOLDER + string("left_cam_calib.xml"); //读取左右相机的标定参数
	FileStorage fs(filename, FileStorage::READ);
	fs["cameraMatrix"] >> l_cameraMatrix;
	fs["distCoeffs"] >> l_distCoeffs;
	fs.release();

	filename = DATA_FOLDER + string("right_cam_calib.xml");
	fs.open(filename, FileStorage::READ);
	fs["cameraMatrix"] >> r_cameraMatrix;
	fs["distCoeffs"] >> r_distCoeffs;
	fs.release();

	if (!l_cameraMatrix.empty() && !l_distCoeffs.empty() && !r_cameraMatrix.empty() && !r_distCoeffs.empty())
	{
		double rms = stereoCalibrate(object_points, l_image_points, r_image_points,
			l_cameraMatrix, l_distCoeffs, r_cameraMatrix, r_distCoeffs, l_images[0].size(), R, T, E, F);
		// R– 输出第一和第二相机坐标系之间的旋转矩阵。
		// T– 输出第一和第二相机坐标系之间的旋转矩阵平移向量。 
                // E-包含了两个摄像头相对位置关系的本征矩阵Essential Matrix(3*3)
                //其物理意义是左右图像坐标系相互转换的矩阵
		// F-既包含两个摄像头相对位置关系、也包含摄像头各自内参信息的基础矩阵

		cout << "校正后的立体相机的均方根误差为:" << rms << endl;
		filename = DATA_FOLDER + string("stereo_calib.xml");
		fs.open(filename, FileStorage::WRITE);
		fs << "l_cameraMatrix" << l_cameraMatrix;
		fs << "r_cameraMatrix" << r_cameraMatrix;
		fs << "l_distCoeffs" << l_distCoeffs;
		fs << "r_distCoeffs" << r_distCoeffs;
		fs << "R" << R;
		fs << "T" << T;
		fs << "E" << E;
		fs << "F" << F;
		cout << "校准参数保存至:" << filename << endl;
		return true;
	}
	else
	{
		return false;
	}
}

Size calibrator::get_image_size()
{
	return l_images[0].size();
}
///////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////

rectifier::rectifier(string filename, Size image_size)
{
	// Read individal camera calibration information from saved XML file
	Mat l_cameraMatrix, l_distCoeffs, r_cameraMatrix, r_distCoeffs, R, T;
	FileStorage fs(filename, FileStorage::READ);
	fs["l_cameraMatrix"] >> l_cameraMatrix;
	fs["l_distCoeffs"] >> l_distCoeffs;
	fs["r_cameraMatrix"] >> r_cameraMatrix;
	fs["r_distCoeffs"] >> r_distCoeffs;
	fs["R"] >> R;
	fs["T"] >> T;
	fs.release();

	if (l_cameraMatrix.empty() || r_cameraMatrix.empty() || l_distCoeffs.empty() || r_distCoeffs.empty()
		|| R.empty() || T.empty())
	{
		cout << "Rectifier: Loading of files not successful" << endl;
	}

	// Calculate transforms for rectifying images
	Mat Rl, Rr, Pl, Pr, Q;
	stereoRectify(l_cameraMatrix, l_distCoeffs, r_cameraMatrix, r_distCoeffs,
		image_size, R, T, Rl, Rr, Pl, Pr, Q);
	//R1– 输出第一个相机的3x3矫正变换(旋转矩阵) .
	//R2– 输出第二个相机的3x3矫正变换(旋转矩阵) .
	//P1–在第一台相机的新的坐标系统(矫正过的)输出 3x4 的投影矩阵
	//P2–在第二台相机的新的坐标系统(矫正过的)输出 3x4 的投影矩阵
	//Q–输出深度视差映射矩阵


	// Calculate pixel maps for efficient rectification of images via lookup tables
	initUndistortRectifyMap(l_cameraMatrix, l_distCoeffs, Rl, Pl, image_size, CV_16SC2, map_l1, map_l2);
	initUndistortRectifyMap(r_cameraMatrix, r_distCoeffs, Rr, Pr, image_size, CV_16SC2, map_r1, map_r2);

	fs.open(filename, FileStorage::APPEND);     //追加矫正数据,映射表
	fs << "Rl" << Rl;
	fs << "Rr" << Rr;
	fs << "Pl" << Pl;
	fs << "Pr" << Pr;
	fs << "Q" << Q;
	fs << "map_l1" << map_l1;
	fs << "map_l2" << map_l2;
	fs << "map_r1" << map_r1;
	fs << "map_r2" << map_r2;
	fs.release();
}

void rectifier::show_rectified(Size image_size) {
	//VideoCapture capr(1), capl(2);
	////reduce frame size
	//capl.set(CV_CAP_PROP_FRAME_HEIGHT, image_size.height);
	//capl.set(CV_CAP_PROP_FRAME_WIDTH, image_size.width);
	//capr.set(CV_CAP_PROP_FRAME_HEIGHT, image_size.height);
	//capr.set(CV_CAP_PROP_FRAME_WIDTH, image_size.width);

	//destroyAllWindows();
	//namedWindow("Combo");
	//while (char(waitKey(1)) != 'q') 
	//{
	//	//grab raw frames first
	//	capl.grab();
	//	capr.grab();
	//	//decode later so the grabbed frames are less apart in time
	//	Mat framel, framel_rect, framer, framer_rect;
	//	capl.retrieve(framel);
	//	capr.retrieve(framer);

	//	if (framel.empty() || framer.empty()) 
	//		break;

	//	// Remap images by pixel maps to rectify
	//	remap(framel, framel_rect, map_l1, map_l2, INTER_LINEAR);
	//	remap(framer, framer_rect, map_r1, map_r2, INTER_LINEAR);

	//	// Make a larger image containing the left and right rectified images side-by-side
	//	Mat combo(image_size.height, 2 * image_size.width, CV_8UC3);
	//	framel_rect.copyTo(combo(Range::all(), Range(0, image_size.width)));
	//	framer_rect.copyTo(combo(Range::all(), Range(image_size.width, 2 * image_size.width)));

	//	// Draw horizontal red lines in the combo image to make comparison easier
	//	for (int y = 0; y < combo.rows; y += 20)
	//		line(combo, Point(0, y), Point(combo.cols, y), Scalar(0, 0, 255));

	//	imshow("Combo", combo);
	//}
	//capl.release();
	//capr.release();
	Mat framel, framel_rect, framer, framer_rect;

	framel = imread("L.jpg");
	framer = imread("R.jpg");
	if (framel.empty() || framer.empty())
	{
		cout << "读取需要矫正的图像失败!!" << endl;
	}


	//Remap images by pixel maps to rectify
	remap(framel, framel_rect, map_l1, map_l2, INTER_LINEAR);
	remap(framer, framer_rect, map_r1, map_r2, INTER_LINEAR);

	//Size imageSize(2048, 1536);	    //将两幅图像拼接在一起,size.width=2048,size.height=1536
	//Mat showImage(1536, 2 * 2048, CV_8UC1);//rows * columns
	//Rect rectLeft(0, 0, imageSize.width, imageSize.height);
	//Rect rectRight(imageSize.width, 0, imageSize.width, imageSize.height);//创建两个矩阵
	//tmpL_img.copyTo(showImage(rectLeft));//把左右矫正后的图片放入showimage对应的左右上
	//tmpR_img.copyTo(showImage(rectRight));

	Mat combo(image_size.height, 2 * image_size.width, CV_8UC3);
	Rect rectLeft(0, 0, image_size.width, image_size.height);
	Rect rectRight(image_size.width, 0, image_size.width, image_size.height);//创建两个矩阵


	framel_rect.copyTo(combo(rectLeft));
	framer_rect.copyTo(combo(rectRight));

	// Draw horizontal red lines in the combo image to make comparison easier
	for (int y = 0; y < combo.rows; y += 20)
	{
		line(combo, Point(0, y), Point(combo.cols, y), Scalar(0, 0, 255));
	}


	imshow("Combo", combo);
	imwrite("Combo.jpg", combo);
}
///////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////


disparity::disparity(string filename, Size image_size)
{
	// 读取双目标定参数
	FileStorage fs(filename, FileStorage::READ);
	fs["map_l1"] >> map_l1;
	fs["map_l2"] >> map_l2;
	fs["map_r1"] >> map_r1;
	fs["map_r2"] >> map_r2;
	fs["Q"] >> Q;

	if (map_l1.empty() || map_l2.empty() || map_r1.empty() || map_r2.empty())
	{
		cout << "WARNING: Loading of mapping matrices not successful" << endl;
	}

	cv::Ptr sgbm = cv::StereoSGBM::create(mindisparity, ndisparities, SADWindowSize);
	int P1 = 8 * framel.channels() * SADWindowSize* SADWindowSize;
	int P2 = 32 * framel.channels() * SADWindowSize* SADWindowSize;
	sgbm->setP1(P1);
	sgbm->setP2(P2);
	sgbm->setPreFilterCap(15);
	sgbm->setUniquenessRatio(10);
	sgbm->setSpeckleRange(2);
	sgbm->setSpeckleWindowSize(100);
	sgbm->setDisp12MaxDiff(1);
	//sgbm->setMode(cv::StereoSGBM::MODE_HH);

}

void disparity::show_disparity(Size image_size) 
{
	
	Mat disp, disp32F;
	Mat framel_rect, framer_rect;
	if (framel.empty() || framer.empty())
	{
		cout << "读取需要矫正的图像失败!!" << endl;
	}
	//SGBM
	remap(framel, framel_rect, map_l1, map_l2, INTER_LINEAR);
	remap(framer, framer_rect, map_r1, map_r2, INTER_LINEAR);
	
	
	sgbm->compute(framel_rect, framer_rect, disp);
	disp.convertTo(disp, CV_32F, 1.0 / 16);
	Mat disp8U = Mat(disp.rows, disp.cols, CV_8UC1);
	normalize(disp, disp8U, 0, 255, NORM_MINMAX, CV_8UC1);
	disp.convertTo(disp32F, CV_32F, 1.f / 16.f);
	
	imshow("SGBM视差图", disp8U);
	imwrite("SGBM视差图.jpg", disp8U);

	Mat pointcloud;
	// 从视差图像中计算三维坐标
	reprojectImageTo3D(disp8U, pointcloud, Q, true);

	//绘制一个红色矩形,大约40像素宽的正方形面积im图像
	int xmin = framel.cols / 2 - 20, xmax = framel.cols / 2 + 20, ymin = framel.rows / 2 - 20, ymax = framel.rows / 2 + 20;
	rectangle(framel_rect, Point(xmin, ymin), Point(xmax, ymax), Scalar(0, 0, 255));

	//提取深度为40px的矩形,并打印出它们的平均值
	pointcloud = pointcloud(Range(ymin, ymax), Range(xmin, xmax));
	Mat z_roi(pointcloud.size(), CV_32FC1);
	int from_to[] = { 2, 0 };
	mixChannels(&pointcloud, 1, &z_roi, 1, from_to, 1);

	cout << "Depth: " << mean(z_roi) << " mm" << endl;
	/*FindStereoCorrespondenceBM
	imshow("Left", framel_rect);
	imwrite("深度图.jpg", framel_rect);*/

}

最后效果: 

视觉检测——双目相机的标定(简单原理+Opencv实现)_第2张图片

 

视觉检测——双目相机的标定(简单原理+Opencv实现)_第3张图片

视觉检测——双目相机的标定(简单原理+Opencv实现)_第4张图片视觉检测——双目相机的标定(简单原理+Opencv实现)_第5张图片

双目标定我们得到:

图像去畸变 :

  1. stereoCalibrate()立体标定
  2. ----------------------------------------------------------------------
  3. R– 第一和第二相机坐标系之间的旋转矩阵
  4. T– 输出第一和第二相机坐标系之间的平移向量
  5. E–本征矩阵
  6. F–基础矩阵
  7. ----------------------------------------------------------------------
  8. 立体校正的目的就是,把实际中消除畸变后的非共面行对准的两幅图像,校正成共面行对准。
  9. stereoRectify()双目矫正 六个参数:cameraMatrix × 2  distCoeffs × 2  R  T矩阵 六个参数
  10. ----------------------------------------------------------------------
  11. R1– 第一个相机的3x3矫正变换(旋转矩阵)
  12. R2– 第二个相机的3x3矫正变换(旋转矩阵) 
  13. P1–在第一台相机的新的坐标系统(矫正过的)输出 3x4 的投影矩阵
  14. P2–在第二台相机的新的坐标系统(矫正过的)输出 3x4 的投影矩阵
  15. Q–深度视差映射矩阵
  16. ----------------------------------------------------------------------
initUndistortRectifyMap(l_cameraMatrix, l_distCoeffs, Rl, Pl, image_size, CV_16SC2, map_l1, map_l2);
initUndistortRectifyMap(r_cameraMatrix, r_distCoeffs, Rr, Pr, image_size, CV_16SC2, map_r1, map_r2);

得到对应左相机右相机的矫正映射表map_L1、map_L2、map_R1、map_R2

你可能感兴趣的:(相机的学习)