- 计算机视觉 ---图像读取与显示(OpenCV与Matplotlib)
两千连弹
计算机视觉计算机视觉opencvmatplotlib
前言本文分别介绍了使用OpenCV和Matplotlib进行图像读取与显示的方法,如cv2.imread()、cv2.imshow()、plt.imread()、plt.imshow()等,并提及了使用OpenCV时的注意事项。OpenCV与Matplotlib图像读取与显示的差异图像读取:OpenCV:使用cv2.imread()函数读取图像,默认读取的图像格式是BGR(蓝绿红)。Matplot
- 机器学习day3
ኈ ቼ ዽ
机器学习人工智能
自定义数据集使用框架的线性回归方法对其进行拟合importmatplotlib.pyplotaspltimporttorchimportnumpyasnp#1.散点输入#1、散点输入#定义输入数据data=[[-0.5,7.7],[1.8,98.5],[0.9,57.8],[0.4,39.2],[-1.4,-15.7],[-1.4,-37.3],[-1.8,-49.1],[1.5,75.6],[0
- Python文件操作(json、csv、tsv、excel、pickle文件序列化)
herosunly
机器学习入门之工具篇Python新手快速入门python文件操作
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了Python文件操作(json、csv、tsv、excel、pickle
- c++介绍与入门基础(详细总结)
X_Pqk
c++开发语言
操作系统以及大型系统软件开发服务器端开发游戏开发嵌入式和物联网领域数字图像处理人工智能分布式应用C++关键字命名空间实际工程应用中:命名空间的作用:命名空间需求展示命名空间定义命名空间使用C++输入&输出c++的《helloworld》输入&输出说明:输入&输出展示std命名空间的使用惯例缺省参数缺省参数概念缺省参数分类函数重载函数重载概念C++支持函数重载的原理–名字修饰(nameManglin
- MongoDB中单对象大小超16M的存储方案
yuanpan
mongodb数据库
在MongoDB中,单个文档的大小限制为16MB。如果某个对象(文档)的大小超过16MB,可以通过以下几种方案解决:1.使用GridFS适用场景:需要存储大文件(如图像、视频、文档等)。原理MongoDB的GridFS是一种专门用于存储超过16MB文件的工具。它会将大文件分割成多个chunk(默认大小255KB),并存储在两个集合中:fs.files:存储文件的元数据(如文件名、大小、类型等)。f
- Python多张图片存入PDF:一步步教你实现
木头左
python办公自动化python钉钉自动化
哈喽,大家好,我是木头左!引言在当今的数字时代,经常需要将多张图片整合成一个PDF文件。无论是为了分享、备份还是打印,PDF都是一个理想的格式。在这篇文章中,我将详细介绍如何使用Python将多张图片存入PDF。准备工作在开始之前,需要确保已经安装了以下库:Pillow:一个强大的图像处理库,用于打开、操作和保存各种图像文件格式。ReportLab:一个用于创建PDF文件的库。你可以通过以下命令安
- 点云从入门到精通技术详解100篇-基于卷积和注意力机制的3D点云特征提取
格图素书
3d
目录知识储备点云获取技术分类一、图像衍生点云二、LiDAR三、RGB-D深度图像传感器基于3D激光slam的点云特征提取为什么要进行点云特征提取特征提取理论与代码编写点云特征提取主体类sample_and_groupfarthest_point_samplequery_ball_pointindex_points前言国内外研究现状卷积神经网络三维卷积神经网络稀疏卷积[21]基于3D点云数据的目标分
- sklearn模型评估全景:指标详解与应用实例
2402_85758936
scala开发语言人工智能
sklearn模型评估全景:指标详解与应用实例在机器学习中,模型评估是衡量算法性能的关键步骤。scikit-learn(简称sklearn)提供了一套全面的模型评估工具,帮助开发者量化模型的准确性、健壮性和其他重要特性。本文将详细介绍sklearn中的模型评估指标,并通过代码示例展示如何应用这些指标。模型评估的重要性模型评估指标是理解和改进模型性能的基础。它们可以提供以下信息:准确性:模型预测的准
- 2021-10-07
少年近视
matlab
Regionprops:用途是getthepropertiesofregion,即用来度量图像区域属性的函数。语法:STATS=regionprops(L,properties)描述:测量标注矩阵L中每一个标注区域的一系列属性。L中不同的正整数元素对应不同的区域,例如:L中等于整数1的元素对应区域1;L中等于整数2的元素对应区域2;以此类推。返回值STATS是一个长度为max(L(:))的结构数组
- ESP32-S3模组上跑通esp32-camera(30)
蓝天居士
ESP32-S3ESP32-S3camerasensorOV5640
接前一篇文章:ESP32-S3模组上跑通esp32-camera(29)一、OV5640初始化2.相机初始化及图像传感器配置上一回解析完了camera_probe函数的第6段代码,本回继续往下解析该函数后续内容。为了便于理解和回顾,再次贴出camera_probe函数源码,在components/esp32-camera/driver/esp_camera.c中,如下:staticesp_err_
- 图像处理算法研究的程序框架
mickey0380
系统调用图像处理算法程序框架Windows
目录1程序框架简介2C#图像读取、显示、保存模块3C动态库图像算法模块4C#调用C动态库5演示Demo5.1开发环境5.2功能介绍5.3下载地址参考1程序框架简介一个图像处理算法研究的常用程序逻辑框架,如下图所示在该框架中,将图像处理算法产品分为上层模块和底层模块两个部分。底层模块使用C/C++实现算法API,提供给上层模块调用;上层模块执行调用API和一些界面功能的实现,最后得到不同平台的软件产
- 图像处理之颜色空间小结
AI洲抿嘴的薯片
opencv算法专题图像处理人工智能
1.介绍在图像处理中,我们会遇到各式各样的颜色空间,比如RGB、HLS、HSV、HSB、YCrCb、CIEXYZ、CIELab,那么它们的区别和应用场所又在哪里呢?1)RGB是生活中最常见的颜色空间,其中,R代表红色通道,G代表绿色通道,B代表蓝色通道,它们之间的相互搭配组合256*256*256,几乎可以包括人类视力所能感知的所有颜色。应用场所:一般的彩色图片都是用RGB三通道来表示,另外,在深
- 【Python高阶篇】探索人工智能:使用Python构建一个简单的聊天机器人
码农必胜客
python人工智能机器人
人工智能是计算机科学中一个非常热门的领域,近年来得到了越来越多的关注。它通过模拟人类思考过程和智能行为来实现对复杂任务的自主处理和学习,已经被广泛应用于许多领域,包括语音识别、自然语言处理、机器人技术、图像识别和推荐系统等。本文将介绍如何使用Python构建一个简单的聊天机器人,以展示人工智能的基本原理和应用。我们将使用Python语言和自然语言处理库来构建一个聊天机器人,该机器人可以接收用户的输
- 【代码复现】ResUNet++进行语义分割(含图像切片预处理)
Cpdr
模型代码解读深度学习人工智能
文章目录参考资料1.preprocess.py1.1.参数声明1.1.1.执行命令的形参1.1.2.代码中的参数声明2.train.py2.1.参数声明2.2.main函数(不包括训练阶段)2.2.1参数说明2.2.2.读取数据部分2.2.3.创建loaders2.3.训练阶段2.4.validation阶段3.其他相关代码3.1.model.py3.1.1.res_unet_plus.py3.1
- 支持向量机图像分类matlab,基于支持向量机的图像分类.MATLAB
流光微言
支持向量机图像分类matlab
【实例简介】基于支持向量机的图像分类.MATLAB【实例截图】【核心代码】基于支持向量机的图像分类├──code.zip├──pictures│├──car││├──car10.jpg││├──car11.jpg││├──car12.jpg││├──car13.jpg││├──car14.jpg││├──car15.jpg││├──car16.jpg││├──car17.jpg││├──car18
- Multi-Planar U-Net: 开源3D医疗图像分割项目推荐
郝茜润Respected
Multi-PlanarU-Net:开源3D医疗图像分割项目推荐MultiPlanarUNetMulti-PlanarUNetforautonomoussegmentationof3Dmedicalimages项目地址:https://gitcode.com/gh_mirrors/mu/MultiPlanarUNet1.项目基础介绍及编程语言Multi-PlanarU-Net是一个开源项目,旨在实
- U-Net 生物医学图像分割开源项目介绍
祝珺月
U-Net生物医学图像分割开源项目介绍unetU-NetBiomedicalImageSegmentation项目地址:https://gitcode.com/gh_mirrors/une/unet1.项目基础介绍及主要编程语言U-Net是由IntelAI开发的一个生物医学图像分割的开源项目。该项目基于TensorFlow和Keras框架,使用Python语言编写,旨在为医学图像分析提供高效的解决
- 深度ResUnet与ResUnet++:新一代的语义分割神器
倪澄莹George
深度ResUnet与ResUnet++:新一代的语义分割神器去发现同类优质开源项目:https://gitcode.com/在这个数据驱动的时代,深度学习模型在图像处理领域展现出了强大的潜力,尤其是在语义分割任务中。今天,我们向您推荐一个基于PyTorch实现的开源项目——DeepResUnet和ResUnet++。这两个模型源自于学术界的最新研究,旨在提高图像分割的准确性和效率。项目介绍这个开源
- Python | 基于支持向量机(SVM)的图像分类案例
python收藏家
python机器学习python机器学习
支持向量机(SVM)是一种监督机器学习算法,可用于分类和回归任务。在本文中,我们将重点关注使用SVM进行图像分类。当计算机处理图像时,它将其视为二维像素阵列。数组的大小对应于图像的分辨率,例如,如果图像是200像素宽和200像素高,则数组的尺寸为200x200x3。前两个维度分别表示图像的宽度和高度,而第三个维度表示RGB颜色通道。数组中的值范围为0到255,表示每个点处像素的强度。为了使用SVM
- OpenHarmony 5.0.2 Release来了!
MardaWang
版本概述OpenHarmony5.0.2Release版本对标准系统的能力进行持续完善,以快速迭代的方式推出API14,相比5.0.1Release版本,重点做出了如下特性新增或增强:进一步增强ArkUI、图形图像的能力,提供更多组件的高级属性设置,支持更多精致动效;进一步增强Web能力,满足更多应用诉求;针对2in1设备特点,新增一系列窗口管理和控制的能力及窗口生命周期行为管理;新增一批企业定制
- OpenCV中添加高斯噪声到彩色图像和点云
LpmShell
opencv人工智能计算机视觉点云
在计算机视觉和图像处理中,噪声是一种常见的现象,可以对图像和点云数据产生不良影响。高斯噪声是一种常见的噪声类型,它具有正态分布的特点。在本文中,我们将使用OpenCV库来添加高斯噪声到彩色图像和点云数据,并提供相应的源代码示例。添加高斯噪声到彩色图像首先,我们将介绍如何使用OpenCV库向彩色图像添加高斯噪声。以下是添加高斯噪声的步骤:步骤1:导入必要的库importnumpyasnpimport
- 【机器学习】必会降维算法之:多维缩放(MDS)
Carl_奕然
机器学习算法人工智能
多维缩放(MDS)1、引言2、多维缩放(MDS)2.1定义2.2应用场景2.3核心原理2.4实现方式2.5算法公式2.6代码示例3、总结1、引言小鱼:最近小屌丝在休假,难得的清闲,我这也闲言少叙,书归正传,咱就聊一聊降为算法之:多维缩放(MDS)在机器学习和数据科学领域,多维缩放(MultidimensionalScaling,简称MDS)是一种常用的降维技术。它能够在尽可能保留原始数据点间距离的
- 基于Canny边缘检测和轮廓检测
如若123
opencv人工智能计算机视觉
这段代码实现了基于Canny边缘检测和轮廓检测,从图像中筛选出面积较大的矩形,并使用OpenCV和Matplotlib显示结果。主要流程如下:步骤详解:读取图像:img=cv2.imread('U:/1.png')使用cv2.imread()加载图像。转换为灰度图像:gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)使用cv2.cvtColor()将图像从BGR色彩
- 提取图片颜色信息转数据信息
~夕上林~
图像处理matlab
提取图片颜色信息转数据信息背景:给定原始图片如下,数据范围为0~2π\piπ,如何通过给定图片,提取出来对应的数据信息。目录提取图片颜色信息转数据信息分析颜色模型图像预处理图像修复图片重建和裁剪提取数据分析原始图片存在两个数据图Transmittedwave和Reflectedwave,接下来将其简称为c图和d图。两数据图的颜色范围和数据范围均一致,之后以c图进行分析:项目Value长lll2.2
- 如何在 Ubuntu 20.04 或 22.04 上安装 Python 3
百川Cs
计算机基础ubuntupythonlinuxpipconda
以下是关于如何在Ubuntu20.04或22.04上安装Python3的详细步骤。Python是一种广泛使用的编程语言,适用于自动化、数据分析、机器学习等领域。Ubuntu系统通常预装了Python3,但如果需要安装或升级到最新版本,可以按照以下方法操作。检查系统是否已安装Python3打开终端(快捷键:Ctrl+Alt+T)。输入以下命令检查是否已安装Python3:python3--versi
- 全网最最实用--教你用gradio搭网页、部署模型等(代码粘贴即用、不讲虚的)
绒绒毛毛雨
大模型算法microsoft前端语言模型人工智能ai
文章目录〇前言一、构建网页1.各个组件介绍a.文本输入和输出b.图像输入和输出c.音频输入和输出d.视频输入和输出e.文件上传和下载f.滑块(`Slider`)g.单选按钮(`Radio`)h.复选框(`CheckboxGroup`)j.数据表格(`Dataframe`)2.一个网页示例代码a.按钮使用指南(事件处理和回调)3.整个网页代码b.整个网页展示二、构建ai任务a.构建一个自己的大语言模
- 探秘FreeMovie:一个开源的电影推荐系统
孟振优Harvester
探秘FreeMovie:一个开源的电影推荐系统去发现同类优质开源项目:https://gitcode.com/项目简介是一个基于深度学习的开源电影推荐系统,由pojiezhiyuanjun开发并维护。该项目的目标是为用户提供个性化的电影推荐服务,通过机器学习算法理解用户的观影偏好,并据此进行智能推荐。技术分析FreeMovie的核心架构包括以下关键组件:数据处理-项目采用Hadoop进行大数据预处
- 龙珠训练营机器学习task04
a_little_pig_
python
学习笔记为阿里云天池龙珠计划机器学习训练营的学习内容,学习链接为:https://tianchi.aliyun.com/competition/entrance/231702/introduction?spm=5176.20222472.J_3678908510.8.8f5e67c2RKrT98总体思路:分别使用LightGBM,xgboost,gbdt,catboost建立多个个体学习器(加入b
- dfs专题五:FloodFill算法
lisanndesu
算法深度优先
1.图像渲染link:733.图像渲染-力扣(LeetCode)codeclassSolution{public:intprev;vector>floodFill(vector>&image,intsr,intsc,intcolor){if(image[sr][sc]==color)returnimage;prev=image[sr][sc];dfs(image,sr,sc,color);retu
- 基于大语言模型构建本地个人AI助理
由数入道
人工智能语言模型自然语言处理
在构建本地专属的个人AI助理时,我们需要处理多个方面的技术需求,确保其在多模态数据处理、实时查询、灵活推理、知识图谱更新等方面具备高效性、实时性和可扩展性。以下探讨如何基于大语言模型构建一个具备全面功能的个人AI助理,涵盖知识库管理、动态推理、用户交互、实时学习和跨模态集成等关键技术。一、技术设计总体架构1.目标与需求个性化AI助理:构建一个本地专属AI助理,能够处理多种输入格式(文本、图像、音频
- 桌面上有多个球在同时运动,怎么实现球之间不交叉,即碰撞?
换个号韩国红果果
html小球碰撞
稍微想了一下,然后解决了很多bug,最后终于把它实现了。其实原理很简单。在每改变一个小球的x y坐标后,遍历整个在dom树中的其他小球,看一下它们与当前小球的距离是否小于球半径的两倍?若小于说明下一次绘制该小球(设为a)前要把他的方向变为原来相反方向(与a要碰撞的小球设为b),即假如当前小球的距离小于球半径的两倍的话,马上改变当前小球方向。那么下一次绘制也是先绘制b,再绘制a,由于a的方向已经改变
- 《高性能HTML5》读后整理的Web性能优化内容
白糖_
html5
读后感
先说说《高性能HTML5》这本书的读后感吧,个人觉得这本书前两章跟书的标题完全搭不上关系,或者说只能算是讲解了“高性能”这三个字,HTML5完全不见踪影。个人觉得作者应该首先把HTML5的大菜拿出来讲一讲,再去分析性能优化的内容,这样才会有吸引力。因为只是在线试读,没有机会看后面的内容,所以不胡乱评价了。
- [JShop]Spring MVC的RequestContextHolder使用误区
dinguangx
jeeshop商城系统jshop电商系统
在spring mvc中,为了随时都能取到当前请求的request对象,可以通过RequestContextHolder的静态方法getRequestAttributes()获取Request相关的变量,如request, response等。 在jshop中,对RequestContextHolder的
- 算法之时间复杂度
周凡杨
java算法时间复杂度效率
在
计算机科学 中,
算法 的时间复杂度是一个
函数 ,它定量描述了该算法的运行时间。这是一个关于代表算法输入值的
字符串 的长度的函数。时间复杂度常用
大O符号 表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是
渐近 的,它考察当输入值大小趋近无穷时的情况。
这样用大写O()来体现算法时间复杂度的记法,
- Java事务处理
g21121
java
一、什么是Java事务 通常的观念认为,事务仅与数据库相关。 事务必须服从ISO/IEC所制定的ACID原则。ACID是原子性(atomicity)、一致性(consistency)、隔离性(isolation)和持久性(durability)的缩写。事务的原子性表示事务执行过程中的任何失败都将导致事务所做的任何修改失效。一致性表示当事务执行失败时,所有被该事务影响的数据都应该恢复到事务执行前的状
- Linux awk命令详解
510888780
linux
一. AWK 说明
awk是一种编程语言,用于在linux/unix下对文本和数据进行处理。数据可以来自标准输入、一个或多个文件,或其它命令的输出。它支持用户自定义函数和动态正则表达式等先进功能,是linux/unix下的一个强大编程工具。它在命令行中使用,但更多是作为脚本来使用。
awk的处理文本和数据的方式:它逐行扫描文件,从第一行到
- android permission
布衣凌宇
Permission
<uses-permission android:name="android.permission.ACCESS_CHECKIN_PROPERTIES" ></uses-permission>允许读写访问"properties"表在checkin数据库中,改值可以修改上传
<uses-permission android:na
- Oracle和谷歌Java Android官司将推迟
aijuans
javaoracle
北京时间 10 月 7 日,据国外媒体报道,Oracle 和谷歌之间一场等待已久的官司可能会推迟至 10 月 17 日以后进行,这场官司的内容是 Android 操作系统所谓的 Java 专利权之争。本案法官 William Alsup 称根据专利权专家 Florian Mueller 的预测,谷歌 Oracle 案很可能会被推迟。 该案中的第二波辩护被安排在 10 月 17 日出庭,从目前看来
- linux shell 常用命令
antlove
linuxshellcommand
grep [options] [regex] [files]
/var/root # grep -n "o" *
hello.c:1:/* This C source can be compiled with:
- Java解析XML配置数据库连接(DOM技术连接 SAX技术连接)
百合不是茶
sax技术Java解析xml文档dom技术XML配置数据库连接
XML配置数据库文件的连接其实是个很简单的问题,为什么到现在才写出来主要是昨天在网上看了别人写的,然后一直陷入其中,最后发现不能自拔 所以今天决定自己完成 ,,,,现将代码与思路贴出来供大家一起学习
XML配置数据库的连接主要技术点的博客;
JDBC编程 : JDBC连接数据库
DOM解析XML: DOM解析XML文件
SA
- underscore.js 学习(二)
bijian1013
JavaScriptunderscore
Array Functions 所有数组函数对参数对象一样适用。1.first _.first(array, [n]) 别名: head, take 返回array的第一个元素,设置了参数n,就
- plSql介绍
bijian1013
oracle数据库plsql
/*
* PL/SQL 程序设计学习笔记
* 学习plSql介绍.pdf
* 时间:2010-10-05
*/
--创建DEPT表
create table DEPT
(
DEPTNO NUMBER(10),
DNAME NVARCHAR2(255),
LOC NVARCHAR2(255)
)
delete dept;
select
- 【Nginx一】Nginx安装与总体介绍
bit1129
nginx
启动、停止、重新加载Nginx
nginx 启动Nginx服务器,不需要任何参数u
nginx -s stop 快速(强制)关系Nginx服务器
nginx -s quit 优雅的关闭Nginx服务器
nginx -s reload 重新加载Nginx服务器的配置文件
nginx -s reopen 重新打开Nginx日志文件
- spring mvc开发中浏览器兼容的奇怪问题
bitray
jqueryAjaxspringMVC浏览器上传文件
最近个人开发一个小的OA项目,属于复习阶段.使用的技术主要是spring mvc作为前端框架,mybatis作为数据库持久化技术.前台使用jquery和一些jquery的插件.
在开发到中间阶段时候发现自己好像忽略了一个小问题,整个项目一直在firefox下测试,没有在IE下测试,不确定是否会出现兼容问题.由于jquer
- Lua的io库函数列表
ronin47
lua io
1、io表调用方式:使用io表,io.open将返回指定文件的描述,并且所有的操作将围绕这个文件描述
io表同样提供三种预定义的文件描述io.stdin,io.stdout,io.stderr
2、文件句柄直接调用方式,即使用file:XXX()函数方式进行操作,其中file为io.open()返回的文件句柄
多数I/O函数调用失败时返回nil加错误信息,有些函数成功时返回nil
- java-26-左旋转字符串
bylijinnan
java
public class LeftRotateString {
/**
* Q 26 左旋转字符串
* 题目:定义字符串的左旋转操作:把字符串前面的若干个字符移动到字符串的尾部。
* 如把字符串abcdef左旋转2位得到字符串cdefab。
* 请实现字符串左旋转的函数。要求时间对长度为n的字符串操作的复杂度为O(n),辅助内存为O(1)。
*/
pu
- 《vi中的替换艺术》-linux命令五分钟系列之十一
cfyme
linux命令
vi方面的内容不知道分类到哪里好,就放到《Linux命令五分钟系列》里吧!
今天编程,关于栈的一个小例子,其间我需要把”S.”替换为”S->”(替换不包括双引号)。
其实这个不难,不过我觉得应该总结一下vi里的替换技术了,以备以后查阅。
1
所有替换方案都要在冒号“:”状态下书写。
2
如果想将abc替换为xyz,那么就这样
:s/abc/xyz/
不过要特别
- [轨道与计算]新的并行计算架构
comsci
并行计算
我在进行流程引擎循环反馈试验的过程中,发现一个有趣的事情。。。如果我们在流程图的每个节点中嵌入一个双向循环代码段,而整个流程中又充满着很多并行路由,每个并行路由中又包含着一些并行节点,那么当整个流程图开始循环反馈过程的时候,这个流程图的运行过程是否变成一个并行计算的架构呢?
- 重复执行某段代码
dai_lm
android
用handler就可以了
private Handler handler = new Handler();
private Runnable runnable = new Runnable() {
public void run() {
update();
handler.postDelayed(this, 5000);
}
};
开始计时
h
- Java实现堆栈(list实现)
datageek
数据结构——堆栈
public interface IStack<T> {
//元素出栈,并返回出栈元素
public T pop();
//元素入栈
public void push(T element);
//获取栈顶元素
public T peek();
//判断栈是否为空
public boolean isEmpty
- 四大备份MySql数据库方法及可能遇到的问题
dcj3sjt126com
DBbackup
一:通过备份王等软件进行备份前台进不去?
用备份王等软件进行备份是大多老站长的选择,这种方法方便快捷,只要上传备份软件到空间一步步操作就可以,但是许多刚接触备份王软件的客用户来说还原后会出现一个问题:因为新老空间数据库用户名和密码不统一,网站文件打包过来后因没有修改连接文件,还原数据库是好了,可是前台会提示数据库连接错误,网站从而出现打不开的情况。
解决方法:学会修改网站配置文件,大多是由co
- github做webhooks:[1]钩子触发是否成功测试
dcj3sjt126com
githubgitwebhook
转自: http://jingyan.baidu.com/article/5d6edee228c88899ebdeec47.html
github和svn一样有钩子的功能,而且更加强大。例如我做的是最常见的push操作触发的钩子操作,则每次更新之后的钩子操作记录都会在github的控制板可以看到!
工具/原料
github
方法/步骤
- ">的作用" target="_blank">JSP中的作用
蕃薯耀
JSP中<base href="<%=basePath%>">的作用
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
- linux下SAMBA服务安装与配置
hanqunfeng
linux
局域网使用的文件共享服务。
一.安装包:
rpm -qa | grep samba
samba-3.6.9-151.el6.x86_64
samba-common-3.6.9-151.el6.x86_64
samba-winbind-3.6.9-151.el6.x86_64
samba-client-3.6.9-151.el6.x86_64
samba-winbind-clients
- guava cache
IXHONG
cache
缓存,在我们日常开发中是必不可少的一种解决性能问题的方法。简单的说,cache 就是为了提升系统性能而开辟的一块内存空间。
缓存的主要作用是暂时在内存中保存业务系统的数据处理结果,并且等待下次访问使用。在日常开发的很多场合,由于受限于硬盘IO的性能或者我们自身业务系统的数据处理和获取可能非常费时,当我们发现我们的系统这个数据请求量很大的时候,频繁的IO和频繁的逻辑处理会导致硬盘和CPU资源的
- Query的开始--全局变量,noconflict和兼容各种js的初始化方法
kvhur
JavaScriptjquerycss
这个是整个jQuery代码的开始,里面包含了对不同环境的js进行的处理,例如普通环境,Nodejs,和requiredJs的处理方法。 还有jQuery生成$, jQuery全局变量的代码和noConflict代码详解 完整资源:
http://www.gbtags.com/gb/share/5640.htm jQuery 源码:
(
- 美国人的福利和中国人的储蓄
nannan408
今天看了篇文章,震动很大,说的是美国的福利。
美国医院的无偿入院真的是个好措施。小小的改善,对于社会是大大的信心。小孩,税费等,政府不收反补,真的体现了人文主义。
美国这么高的社会保障会不会使人变懒?答案是否定的。正因为政府解决了后顾之忧,人们才得以倾尽精力去做一些有创造力,更造福社会的事情,这竟成了美国社会思想、人
- N阶行列式计算(JAVA)
qiuwanchi
N阶行列式计算
package gaodai;
import java.util.List;
/**
* N阶行列式计算
* @author 邱万迟
*
*/
public class DeterminantCalculation {
public DeterminantCalculation(List<List<Double>> determina
- C语言算法之打渔晒网问题
qiufeihu
c算法
如果一个渔夫从2011年1月1日开始每三天打一次渔,两天晒一次网,编程实现当输入2011年1月1日以后任意一天,输出该渔夫是在打渔还是在晒网。
代码如下:
#include <stdio.h>
int leap(int a) /*自定义函数leap()用来指定输入的年份是否为闰年*/
{
if((a%4 == 0 && a%100 != 0
- XML中DOCTYPE字段的解析
wyzuomumu
xml
DTD声明始终以!DOCTYPE开头,空一格后跟着文档根元素的名称,如果是内部DTD,则再空一格出现[],在中括号中是文档类型定义的内容. 而对于外部DTD,则又分为私有DTD与公共DTD,私有DTD使用SYSTEM表示,接着是外部DTD的URL. 而公共DTD则使用PUBLIC,接着是DTD公共名称,接着是DTD的URL.
私有DTD
<!DOCTYPErootSYST