- 论文阅读笔记(十九):YOLO9000: Better, Faster, Stronger
__Sunshine__
笔记YOLO9000detectionclassification
WeintroduceYOLO9000,astate-of-the-art,real-timeobjectdetectionsystemthatcandetectover9000objectcategories.FirstweproposevariousimprovementstotheYOLOdetectionmethod,bothnovelanddrawnfrompriorwork.Theim
- 论文阅读笔记: DINOv2: Learning Robust Visual Features without Supervision
小夏refresh
论文计算机视觉深度学习论文阅读笔记深度学习计算机视觉人工智能
DINOv2:LearningRobustVisualFeatureswithoutSupervision论文地址:https://arxiv.org/abs/2304.07193代码地址:https://github.com/facebookresearch/dinov2摘要大量数据上的预训练模型在NLP方面取得突破,为计算机视觉中的类似基础模型开辟了道路。这些模型可以通过生成通用视觉特征(即无
- SAFEFL: MPC-friendly Framework for Private and Robust Federated Learning论文阅读笔记
慘綠青年627
论文阅读笔记深度学习
SAFEFL:MPC-friendlyFrameworkforPrivateandRobustFederatedLearning适用于私有和鲁棒联邦学习的MPC友好框架SAFEFL,这是一个利用安全多方计算(MPC)来评估联邦学习(FL)技术在防止隐私推断和中毒攻击方面的有效性和性能的框架。概述传统机器学习(ML):集中收集数据->隐私保护问题privacy-preservingML(PPML)采
- A Tutorial on Near-Field XL-MIMO Communications Towards 6G【论文阅读笔记】
Cc小跟班
【论文阅读】相关论文阅读笔记
此系列是本人阅读论文过程中的简单笔记,比较随意且具有严重的偏向性(偏向自己研究方向和感兴趣的),随缘分享,共同进步~论文主要内容:建立XL-MIMO模型,考虑NUSW信道和非平稳性;基于近场信道模型,分析性能(SNRscalinglaws,波束聚焦、速率、DoF)XL-MIMO设计问题:信道估计、波束码本、波束训练、DAMXL-MIMO信道特性变化:UPW➡NUSW空间平稳–>空间非平稳(可视区域
- 时序预测相关论文阅读笔记
能力越小责任越小YA
论文阅读笔记时序预测Transformer
笔记链接:【有道云笔记】读论文(记录)https://note.youdao.com/s/52ugLbot用于个人学习记录。
- Your Diffusion Model is Secretly a Zero-Shot Classifier论文阅读笔记
Rising_Flashlight
论文阅读笔记计算机视觉
YourDiffusionModelisSecretlyaZero-ShotClassifier论文阅读笔记这篇文章我感觉在智源大会上听到无数个大佬讨论,包括OpenAISora团队负责人,谢赛宁,好像还有杨植麟。虽然这个文章好像似乎被引量不是特别高,但是和AI甚至人类理解很本质的问题很相关,即是不是要通过生成来构建理解的问题,文章的做法也很巧妙,感觉是一些学者灵机一动的产物,好好学习一个!摘要这
- Conditional Flow Matching: Simulation-Free Dynamic Optimal Transport论文阅读笔记
猪猪想上树
论文阅读笔记
ConditionalFlowMatching:Simulation-FreeDynamicOptimalTransport笔记发现问题连续正规化流(CNF)是一种有吸引力的生成式建模技术,但在基于模拟的最大似然训练中受到了限制。解决问题介绍一种新的条件流匹配(CFM),一种针对CNFs的免模拟训练目标。具有稳定的回归目标,用于扩散模型中的随机流,但享有确定性流模型的有效推断。与扩散模型和CNF目
- 论文阅读笔记《SimpleShot: Revisiting Nearest-Neighbor Classification for Few-Shot Learning》
深视
论文阅读笔记#小样本学习深度学习小样本学习
小样本学习&元学习经典论文整理||持续更新核心思想 本文提出一种基于最近邻方法的小样本学习算法(SimpleShot),作者指出目前大量的小样本学习算法都采用了元学习的方案,而作者却发现使用简单的特征提取器+最近邻分类器的方法就能实现非常优异的小样本分类效果。本文首先用特征提取网络fθf_{\theta}fθ+线性分类器在一个基础数据集上对网络进行训练,将训练得到的特征提取网络增加一个简单的特征
- 【论文阅读笔记】(2015 ICML)Unsupervised Learning of Video Representations using LSTMs
小吴同学真棒
学习人工智能LSTM动作识别无监督自监督self-supervised
UnsupervisedLearningofVideoRepresentationsusingLSTMs(2015ICML)NitishSrivastava,ElmanMansimov,RuslanSalakhutdinovNotesContributionsOurmodelusesanencoderLSTMtomapaninputsequenceintoafixedlengthrepresent
- 使用动态网格的流体动画 Fluid Animation with Dynamic Meshes 论文阅读笔记
hijackedbycsdn
FluidSimulation笔记
目录引言背景方法离散化离散化的导数算子速度插值广义的半拉格朗日步重新网格化双向流固耦合和质量守恒原文:Klingner,BryanM.,etal.“Fluidanimationwithdynamicmeshes.”ACMSIGGRAPH2006Papers.2006.820-825.引言使用[Alliezetal.,2005]的方法动态生成不规则的四面体网格根据边界的位置、边界的形状、基于流体和速
- 【论文阅读笔记】AutoAugment:Learning Augmentation Strategies from Data
少写代码少看论文多多睡觉
#论文阅读笔记论文阅读笔记
AutoAugment:LearningAugmentationStrategiesfromData摘要研究方法:本文描述了一种名为AutoAugment的简单程序,通过这个程序可以自动寻找改进的数据增强策略。研究设计了一个策略空间,其中策略包含多个子策略,在每个小批量数据中针对每张图片随机选择一个子策略。每个子策略由两个操作组成,每个操作是图像处理函数(如平移、旋转或剪切),以及应用这些函数的概
- 【论文阅读笔记】Contrastive Learning with Stronger Augmentations
少写代码少看论文多多睡觉
#论文阅读笔记论文阅读笔记
ContrastiveLearningwithStrongerAugmentations摘要基于提供的摘要,该论文的核心焦点是在对比学习领域提出的一个新框架——利用强数据增强的对比学习(ContrastiveLearningwithStrongerAugmentations,简称CLSA)。以下是对摘要的解析:问题陈述:表征学习(representationlearning)已在对比学习方法的推动
- 使用八叉树模拟水和烟雾 Simulating Water and Smoke with an Octree Data Structure 论文阅读笔记
hijackedbycsdn
FluidSimulation笔记
原文:Losasso,Frank,FrédéricGibou,andRonFedkiw.“Simulatingwaterandsmokewithanoctreedatastructure.”Acmsiggraph2004papers.2004.457-462.引言这篇文章扩展了[Popinet2003]的工作,拓展到表面自由流,并且使得八叉树不受限制自适应网格划分的一个缺点是,它的模板不是均匀的,
- PointMixer论文阅读笔记
ZHANG8023ZHEN
论文阅读笔记
MLP-mixer是最近很流行的一种网络结构,比起Transformer和CNN的节构笨重,MLP-mixer不仅节构简单,而且在图像识别方面表现优异。但是MLP-mixer在点云识别方面表现欠佳,PointMixer就是在保留了MLP-mixer优点的同时,还可以很好的处理点云问题。PointMixer可以很好的处理intra-set,inter-set,hierarchical-set的点云。
- DCNNs之DNA论文阅读笔记
苏十一0421
Article:DeepConvolutionalNeuralNetworkArchitectureWithReconfigurableComputationPatternsJournalTitle:IEEETransactionsonVeryLargeScaleIntegration(VLSI)SystemsIssue:No.08-Aug.(2017vol.25)ISSN:1063-8210pp
- 【论文阅读笔记】UNSUPERVISED REPRESENTATION LEARNING FOR TIME SERIES WITH TEMPORAL NEIGHBORHOOD CODING
少写代码少看论文多多睡觉
#论文阅读笔记论文阅读笔记
UNSUPERVISEDREPRESENTATIONLEARNINGFORTIMESERIESWITHTEMPORALNEIGHBORHOODCODINGABSTRACT 本文提出了一种自监督框架,名为“时间邻域编码”(TemporalNeighborhoodCoding,TNC),用于学习非平稳时间序列的可泛化表示。该方法利用信号生成过程的局部平滑性来定义具有平稳性质的时间邻域。通过使用去偏差对
- Deep Learning Workload Scheduling in GPU Datacenters:Taxonomy, Challenges and Vision 论文阅读
牛码当驴
云计算算法云计算论文阅读
【论文阅读笔记】DeepLearningWorkloadSchedulinginGPUDatacenters:Taxonomy,ChallengesandVision论文链接GPU数据中心的DL工作负载调度:分类、挑战、展望AbstractDeeplearning(DL)showsitsprosperityinawidevarietyoffields.ThedevelopmentofaDLmode
- 论文阅读笔记 RPT: Learning Point Set Representation for Siamese Visual Tracking
faverr
论文阅读笔记RPT:LearningPointSetRepresentationforSiameseVisualTracking综合了可形变卷积、RepPoints检测、多层级卷积特征等思想论文地址代码地址现有跟踪方法中存在的问题现有的跟踪方法往往采用矩形框或四边形来表示目标的状态(位置和大小),这种方式忽略了目标自身会变化的特点(形变、姿态变化),因此作者采用表示点(Representative
- SpanDB: A Fast, Cost-Effective LSM-tree Based KV Store on Hybrid Storage——论文泛读
妙BOOK言
论文阅读论文阅读KV存储lsm-tree
FAST2021Paper论文阅读笔记整理问题键值(KV)存储支持许多关键的应用和服务。它们在内存中执行快速处理,但通常受到I/O性能的限制。最近出现的高速NVMeSSD推动了新KV系统设计,以利用其低延迟和高带宽。挑战当前基于LSM树的KV存储未能充分发挥NVMeSSD的全部潜力。例如,在OptaneP4800X上部署RocksDB,相对于SATASSD,对于50%写入的工作负载,吞吐量仅提高了
- DyTIS: A Dynamic Dataset Targeted Index Structure Simultaneously Efficient for Search, Inse...——论文泛读
妙BOOK言
论文阅读论文阅读KV存储
EuroSys2023Paper论文阅读笔记整理问题在现实生活中,许多数据集都是复杂且动态的,即它们的键密度在整个键空间上变化,它们的键分布随时间变化。对于这样的动态数据集,使得索引结构能够高效支持数据管理中的所有关键操作,特别是搜索、插入和扫描,是一项具有挑战性的任务。挑战对于内存中的数据管理系统,例如内存数据库和键值存储[4,12,34,35,56],索引结构的效率至关重要,强烈影响系统的最终
- Gan论文阅读笔记
Alex·Fall
深度学习生成对抗网络论文阅读笔记
GAN论文阅读笔记2014年老论文了,主要记录一些重要的东西。论文链接如下:GenerativeAdversarialNets(neurips.cc)文章目录GAN论文阅读笔记出发点创新点设计训练代码网络结构代码测试代码出发点Deepgenerativemodelshavehadlessofanimpact,duetothedifficultyofapproximatingmanyintracta
- PairLIE论文阅读笔记
Alex·Fall
低光增强论文阅读笔记
PairLIE论文阅读笔记论文为2023CVPR的LearningaSimpleLow-lightImageEnhancerfromPairedLow-lightInstances.论文链接如下:openaccess.thecvf.com/content/CVPR2023/papers/Fu_Learning_a_Simple_Low-Light_Image_Enhancer_From_Paire
- 点云transformer算法: FlatFormer 论文阅读笔记
zhaoyqcsdn
深度学习transformer算法论文阅读
代码:https://github.com/mit-han-lab/flatformer论文:https://arxiv.org/abs/2301.08739[FlatFormer.pdf]Flatformer是对点云检测中的backbone3d部分的改进工作,主要在探究怎么高效的对点云应用transformer具体的工作如下:一个缩写:**PCTs即pointcloudtransformers*
- 【论文阅读笔记】InstantID : Zero-shot Identity-Preserving Generation in Seconds
LuH1124
论文阅读笔记图像编辑文生图论文阅读文生图扩散模型人脸识别
InstantID:秒级零样本身份保持生成理解摘要Introduction贡献RelatedWorkText-to-imageDiffusionModelsSubject-drivenImageGenerationIDPreservingImageGenerationMethod实验定性实验消融实验与先前方法的对比富有创意的更多任务新视角合成身份插值多身份区域控制合成结论和未来工作project:
- 【论文阅读笔记】Taming Transformers for High-Resolution Image Synthesis
LuH1124
论文阅读笔记论文阅读transformercnn图像生成
TamingTransformersforHigh-ResolutionImageSynthesis记录前置知识AbstractIntroductionRelatedWorkMethodLearninganEffectiveCodebookofImageConstituentsforUseinTransformersLearningtheCompositionofImageswithTransfo
- 【论文阅读笔记】Make-A-Character: High Quality Text-to-3D Character Generation within Minutes
LuH1124
论文阅读笔记数字人Relight论文阅读3d数字人计算机图形学头发生成
【论文阅读笔记】分钟级别的高质量文本到3D角色生成AbstractIntroductionMethodLL/VM解析人脸面部属性并生成根据密集地标重建face/head形状几何生成纹理生成纹理提取漫反射反照率(DiffusionAlbedo)估计纹理矫正和补全头发生成(牛了)资产匹配实验未来工作paperhttps://arxiv.org/abs/2312.15430Demohttps://hug
- 【论文阅读笔记】Würstchen: AN EFFICIENT ARCHITECTURE FOR LARGE-SCALETEXT-TO-IMAGE DIFFUSION MODELS
LuH1124
论文阅读笔记文生图论文阅读text2img扩散模型
WURSTCHEN:用于大规模文本到图像扩散模型的高效架构摘要贡献方法训练推理实验结论附录附录A附录B附录C附录D附录E这篇文章提出了一个高效的用于文本到图像生成模型架构,整体思路比较直白,在不损失图像生成质量的情况下,相比于现有T2I模型(SD1.4,SD2.1等)大大节约了成本。附录部分给了一些有趣的东西,比如FID的鲁棒性整篇文章还有点疑惑,比如阶段B的训练,使用的模型;节省成本主要是在说C
- 【论文阅读笔记】Advances in 3D Generation: A Survey
LuH1124
论文阅读笔记3DGeneration论文阅读3d神经表示渲染
Advancesin3DGeneration:ASurvey挖个坑,近期填完摘要time:2024年1月31日paper:arxiv机构:腾讯挖个坑,近期填完摘要生成3D模型位于计算机图形学的核心,一直是几十年研究的重点。随着高级神经表示和生成模型的出现,3D内容生成领域发展迅速,能够创建越来越高质量和多样化的3D模型。该领域的快速增长使得很难跟上所有最近的发展。在本次调查中,我们旨在介绍3D生成
- 【论文阅读笔记】Transformer-XL
没啥信心
Paper:Transformer-XL:AttentiveLanguageModelsBeyondaFixed-LengthContext重点关注论文中的相对位置编码及提高融合了相对位置信息的attentionscore的计算效率的部分。AbstractTransformer具有学习长依赖的能力,但受限于语言模型固定长度上下文的限定。本文提出的Transformer-XL神经网络架构可以在不打破
- 【论文阅读笔记】Time Series Contrastive Learning with Information-Aware Augmentations
少写代码少看论文多多睡觉
#论文阅读笔记论文阅读笔记
TimeSeriesContrastiveLearningwithInformation-AwareAugmentations摘要背景:在近年来,已经有许多对比学习方法被提出,并在实证上取得了显著的成功。尽管对比学习在图像和语言领域非常有效和普遍,但在时间序列数据上的应用相对较少。对比学习的关键组成部分:对比学习的一个关键组成部分是选择适当的数据增强(augmentation)方式,通过施加一些先
- mysql主从数据同步
林鹤霄
mysql主从数据同步
配置mysql5.5主从服务器(转)
教程开始:一、安装MySQL
说明:在两台MySQL服务器192.168.21.169和192.168.21.168上分别进行如下操作,安装MySQL 5.5.22
二、配置MySQL主服务器(192.168.21.169)mysql -uroot -p &nb
- oracle学习笔记
caoyong
oracle
1、ORACLE的安装
a>、ORACLE的版本
8i,9i : i是internet
10g,11g : grid (网格)
12c : cloud (云计算)
b>、10g不支持win7
&
- 数据库,SQL零基础入门
天子之骄
sql数据库入门基本术语
数据库,SQL零基础入门
做网站肯定离不开数据库,本人之前没怎么具体接触SQL,这几天起早贪黑得各种入门,恶补脑洞。一些具体的知识点,可以让小白不再迷茫的术语,拿来与大家分享。
数据库,永久数据的一个或多个大型结构化集合,通常与更新和查询数据的软件相关
- pom.xml
一炮送你回车库
pom.xml
1、一级元素dependencies是可以被子项目继承的
2、一级元素dependencyManagement是定义该项目群里jar包版本号的,通常和一级元素properties一起使用,既然有继承,也肯定有一级元素modules来定义子元素
3、父项目里的一级元素<modules>
<module>lcas-admin-war</module>
<
- sql查地区省市县
3213213333332132
sqlmysql
-- db_yhm_city
SELECT * FROM db_yhm_city WHERE class_parent_id = 1 -- 海南 class_id = 9 港、奥、台 class_id = 33、34、35
SELECT * FROM db_yhm_city WHERE class_parent_id =169
SELECT d1.cla
- 关于监听器那些让人头疼的事
宝剑锋梅花香
画图板监听器鼠标监听器
本人初学JAVA,对于界面开发我只能说有点蛋疼,用JAVA来做界面的话确实需要一定的耐心(不使用插件,就算使用插件的话也没好多少)既然Java提供了界面开发,老师又要求做,只能硬着头皮上啦。但是监听器还真是个难懂的地方,我是上了几次课才略微搞懂了些。
- JAVA的遍历MAP
darkranger
map
Java Map遍历方式的选择
1. 阐述
对于Java中Map的遍历方式,很多文章都推荐使用entrySet,认为其比keySet的效率高很多。理由是:entrySet方法一次拿到所有key和value的集合;而keySet拿到的只是key的集合,针对每个key,都要去Map中额外查找一次value,从而降低了总体效率。那么实际情况如何呢?
为了解遍历性能的真实差距,包括在遍历ke
- POJ 2312 Battle City 优先多列+bfs
aijuans
搜索
来源:http://poj.org/problem?id=2312
题意:题目背景就是小时候玩的坦克大战,求从起点到终点最少需要多少步。已知S和R是不能走得,E是空的,可以走,B是砖,只有打掉后才可以通过。
思路:很容易看出来这是一道广搜的题目,但是因为走E和走B所需要的时间不一样,因此不能用普通的队列存点。因为对于走B来说,要先打掉砖才能通过,所以我们可以理解为走B需要两步,而走E是指需要1
- Hibernate与Jpa的关系,终于弄懂
avords
javaHibernate数据库jpa
我知道Jpa是一种规范,而Hibernate是它的一种实现。除了Hibernate,还有EclipseLink(曾经的toplink),OpenJPA等可供选择,所以使用Jpa的一个好处是,可以更换实现而不必改动太多代码。
在play中定义Model时,使用的是jpa的annotations,比如javax.persistence.Entity, Table, Column, OneToMany
- 酸爽的console.log
bee1314
console
在前端的开发中,console.log那是开发必备啊,简直直观。通过写小函数,组合大功能。更容易测试。但是在打版本时,就要删除console.log,打完版本进入开发状态又要添加,真不够爽。重复劳动太多。所以可以做些简单地封装,方便开发和上线。
/**
* log.js hufeng
* The safe wrapper for `console.xxx` functions
*
- 哈佛教授:穷人和过于忙碌的人有一个共同思维特质
bijian1013
时间管理励志人生穷人过于忙碌
一个跨学科团队今年完成了一项对资源稀缺状况下人的思维方式的研究,结论是:穷人和过于忙碌的人有一个共同思维特质,即注意力被稀缺资源过分占据,引起认知和判断力的全面下降。这项研究是心理学、行为经济学和政策研究学者协作的典范。
这个研究源于穆来纳森对自己拖延症的憎恨。他7岁从印度移民美国,很快就如鱼得水,哈佛毕业
- other operate
征客丶
OSosx
一、Mac Finder 设置排序方式,预览栏 在显示-》查看显示选项中
二、有时预览显示时,卡死在那,有可能是一些临时文件夹被删除了,如:/private/tmp[有待验证]
--------------------------------------------------------------------
若有其他凝问或文中有错误,请及时向我指出,
我好及时改正,同时也让我们一
- 【Scala五】分析Spark源代码总结的Scala语法三
bit1129
scala
1. If语句作为表达式
val properties = if (jobIdToActiveJob.contains(jobId)) {
jobIdToActiveJob(stage.jobId).properties
} else {
// this stage will be assigned to "default" po
- ZooKeeper 入门
BlueSkator
中间件zk
ZooKeeper是一个高可用的分布式数据管理与系统协调框架。基于对Paxos算法的实现,使该框架保证了分布式环境中数据的强一致性,也正是基于这样的特性,使得ZooKeeper解决很多分布式问题。网上对ZK的应用场景也有不少介绍,本文将结合作者身边的项目例子,系统地对ZK的应用场景进行一个分门归类的介绍。
值得注意的是,ZK并非天生就是为这些应用场景设计的,都是后来众多开发者根据其框架的特性,利
- MySQL取得当前时间的函数是什么 格式化日期的函数是什么
BreakingBad
mysqlDate
取得当前时间用 now() 就行。
在数据库中格式化时间 用DATE_FORMA T(date, format) .
根据格式串format 格式化日期或日期和时间值date,返回结果串。
可用DATE_FORMAT( ) 来格式化DATE 或DATETIME 值,以便得到所希望的格式。根据format字符串格式化date值:
%S, %s 两位数字形式的秒( 00,01,
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 4_JAVA+Oracle面试题(有答案)
chenke
oracle
基础测试题
卷面上不能出现任何的涂写文字,所有的答案要求写在答题纸上,考卷不得带走。
选择题
1、 What will happen when you attempt to compile and run the following code? (3)
public class Static {
static {
int x = 5; // 在static内有效
}
st
- 新一代工作流系统设计目标
comsci
工作算法脚本
用户只需要给工作流系统制定若干个需求,流程系统根据需求,并结合事先输入的组织机构和权限结构,调用若干算法,在流程展示版面上面显示出系统自动生成的流程图,然后由用户根据实际情况对该流程图进行微调,直到满意为止,流程在运行过程中,系统和用户可以根据情况对流程进行实时的调整,包括拓扑结构的调整,权限的调整,内置脚本的调整。。。。。
在这个设计中,最难的地方是系统根据什么来生成流
- oracle 行链接与行迁移
daizj
oracle行迁移
表里的一行对于一个数据块太大的情况有二种(一行在一个数据块里放不下)
第一种情况:
INSERT的时候,INSERT时候行的大小就超一个块的大小。Oracle把这行的数据存储在一连串的数据块里(Oracle Stores the data for the row in a chain of data blocks),这种情况称为行链接(Row Chain),一般不可避免(除非使用更大的数据
- [JShop]开源电子商务系统jshop的系统缓存实现
dinguangx
jshop电子商务
前言
jeeshop中通过SystemManager管理了大量的缓存数据,来提升系统的性能,但这些缓存数据全部都是存放于内存中的,无法满足特定场景的数据更新(如集群环境)。JShop对jeeshop的缓存机制进行了扩展,提供CacheProvider来辅助SystemManager管理这些缓存数据,通过CacheProvider,可以把缓存存放在内存,ehcache,redis,memcache
- 初三全学年难记忆单词
dcj3sjt126com
englishword
several 儿子;若干
shelf 架子
knowledge 知识;学问
librarian 图书管理员
abroad 到国外,在国外
surf 冲浪
wave 浪;波浪
twice 两次;两倍
describe 描写;叙述
especially 特别;尤其
attract 吸引
prize 奖品;奖赏
competition 比赛;竞争
event 大事;事件
O
- sphinx实践
dcj3sjt126com
sphinx
安装参考地址:http://briansnelson.com/How_to_install_Sphinx_on_Centos_Server
yum install sphinx
如果失败的话使用下面的方式安装
wget http://sphinxsearch.com/files/sphinx-2.2.9-1.rhel6.x86_64.rpm
yum loca
- JPA之JPQL(三)
frank1234
ormjpaJPQL
1 什么是JPQL
JPQL是Java Persistence Query Language的简称,可以看成是JPA中的HQL, JPQL支持各种复杂查询。
2 检索单个对象
@Test
public void querySingleObject1() {
Query query = em.createQuery("sele
- Remove Duplicates from Sorted Array II
hcx2013
remove
Follow up for "Remove Duplicates":What if duplicates are allowed at most twice?
For example,Given sorted array nums = [1,1,1,2,2,3],
Your function should return length
- Spring4新特性——Groovy Bean定义DSL
jinnianshilongnian
spring 4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装Mysql5.5
liuxingguome
centos
CentOS下以RPM方式安装MySQL5.5
首先卸载系统自带Mysql:
yum remove mysql mysql-server mysql-libs compat-mysql51
rm -rf /var/lib/mysql
rm /etc/my.cnf
查看是否还有mysql软件:
rpm -qa|grep mysql
去http://dev.mysql.c
- 第14章 工具函数(下)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- POJ 1050
SaraWon
二维数组子矩阵最大和
POJ ACM第1050题的详细描述,请参照
http://acm.pku.edu.cn/JudgeOnline/problem?id=1050
题目意思:
给定包含有正负整型的二维数组,找出所有子矩阵的和的最大值。
如二维数组
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
中和最大的子矩阵是
9 2
-4 1
-1 8
且最大和是15
- [5]设计模式——单例模式
tsface
java单例设计模式虚拟机
单例模式:保证一个类仅有一个实例,并提供一个访问它的全局访问点
安全的单例模式:
/*
* @(#)Singleton.java 2014-8-1
*
* Copyright 2014 XXXX, Inc. All rights reserved.
*/
package com.fiberhome.singleton;
- Java8全新打造,英语学习supertool
yangshangchuan
javasuperword闭包java8函数式编程
superword是一个Java实现的英文单词分析软件,主要研究英语单词音近形似转化规律、前缀后缀规律、词之间的相似性规律等等。Clean code、Fluent style、Java8 feature: Lambdas, Streams and Functional-style Programming。
升学考试、工作求职、充电提高,都少不了英语的身影,英语对我们来说实在太重要