torch.save
:保存序列化的对象到磁盘,使用了Python
的pickle
进行序列化,模型、张量、所有对象的字典。torch.load
:使用了pickle
的unpacking将pickled的对象反序列化到内存中。torch.nn.Module.load_state_dict
:使用反序列化的state_dict
加载模型的参数字典。state_dict 是一个Python字典,将每一层映射成它的参数张量。注意只有带有可学习参数的层(卷积层、全连接层等),以及注册的缓存(batchnorm的运行平均值)在state_dict 中才有记录。state_dict同样包含优化器对象,存储了优化器的状态,所使用到的超参数。
# 定义模型
class TheModelClass(nn.Module):
def __init__(self):
super(TheModelClass, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
# 初始化模型
model = TheModelClass()
# 初始化优化器
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
# 打印模型的 state_dict
print("Model's state_dict:")
for param_tensor in model.state_dict():
print(param_tensor, "\t", model.state_dict()[param_tensor].size())
# 打印优化器的 state_dict
print("Optimizer's state_dict:")
for var_name in optimizer.state_dict():
print(var_name, "\t", optimizer.state_dict()[var_name])
输出:
Model's state_dict:
conv1.weight torch.Size([6, 3, 5, 5])
conv1.bias torch.Size([6])
conv2.weight torch.Size([16, 6, 5, 5])
conv2.bias torch.Size([16])
fc1.weight torch.Size([120, 400])
fc1.bias torch.Size([120])
fc2.weight torch.Size([84, 120])
fc2.bias torch.Size([84])
fc3.weight torch.Size([10, 84])
fc3.bias torch.Size([10])
Optimizer's state_dict:
state {}
param_groups [{'lr': 0.001, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'nesterov': False, 'params': [4675713712, 4675713784, 4675714000, 4675714072, 4675714216, 4675714288, 4675714432, 4675714504, 4675714648, 4675714720]}]
保存:
torch.save(model.state_dict(), PATH)
加载:
model = TheModelClass(*args, **kwargs)
model.load_state_dict(torch.load(PATH))
model.eval()
要注意这个细节,如果使用nn.DataParallel
在一台电脑上使用了多个GPU,那么加载模型的时候也必须先进行nn.DataParallel
。
保存模型的推理过程的时候,只需要保存模型训练好的参数,使用torch.save()
保存state_dict
,能够方便模型的加载。因此推荐使用这种方式进行模型保存。
记住一定要使用model.eval()
来固定dropout和归一化层,否则每次推理会生成不同的结果。
注意,
load_state_dict()
需要传入字典对象,因此需要先反序列化state_dict
再传入load_state_dict()
保存:
torch.save(model, PATH)
加载:
# 模型类必须在别的地方定义
model = torch.load(PATH)
model.eval()
这种保存/加载模型的过程使用了最直观的语法,所用代码量少。这使用Python的pickle保存所有模块。这种方法的缺点是,保存模型的时候,序列化的数据被绑定到了特定的类和确切的目录。这是因为pickle不保存模型类本身,而是保存这个类的路径,并且在加载的时候会使用。因此,当在其他项目里使用或者重构的时候,加载模型的时候会出错。
一般来说,PyTorch的模型以.pt或者.pth文件格式保存。
一定要记住在评估模式的时候调用model.eval()
来固定dropout和批次归一化。否则会产生不一致的推理结果。
保存:
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss,
...
}, PATH)
加载:
model = TheModelClass(*args, **kwargs)
optimizer = TheOptimizerClass(*args, **kwargs)
checkpoint = torch.load(PATH)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
epoch = checkpoint['epoch']
loss = checkpoint['loss']
model.eval()
# - 或者 -
model.train()
在保存用于推理或者继续训练的常规检查点的时候,除了模型的state_dict之外,还必须保存其他参数。保存优化器的state_dict也非常重要,因为它包含了模型在训练时候优化器的缓存和参数。除此之外,还可以保存停止训练时epoch数,最新的模型损失,额外的torch.nn.Embedding
层等。
要保存多个组件,则将它们放到一个字典中,然后使用torch.save()
序列化这个字典。一般来说,使用.tar文件格式来保存这些检查点。
加载各个组件,首先初始化模型和优化器,然后使用torch.load()
加载保存的字典,然后可以直接查询字典中的值来获取保存的组件。
同样,评估模型的时候一定不要忘了调用model.eval()
。
保存:
torch.save({
'modelA_state_dict': modelA.state_dict(),
'modelB_state_dict': modelB.state_dict(),
'optimizerA_state_dict': optimizerA.state_dict(),
'optimizerB_state_dict': optimizerB.state_dict(),
...
}, PATH)
加载:
modelA = TheModelAClass(*args, **kwargs)
modelB = TheModelBClass(*args, **kwargs)
optimizerA = TheOptimizerAClass(*args, **kwargs)
optimizerB = TheOptimizerBClass(*args, **kwargs)
checkpoint = torch.load(PATH)
modelA.load_state_dict(checkpoint['modelA_state_dict'])
modelB.load_state_dict(checkpoint['modelB_state_dict'])
optimizerA.load_state_dict(checkpoint['optimizerA_state_dict'])
optimizerB.load_state_dict(checkpoint['optimizerB_state_dict'])
modelA.eval()
modelB.eval()
# - 或者 -
modelA.train()
modelB.train()
保存的模型包含多个torch.nn.Modules
时,比如GAN,一个序列-序列模型,或者组合模型,使用与保存常规检查点的方式来保存模型。也就是说,保存每个模型的state_dict和对应的优化器到一个字典中。我们可以保存任何能帮助我们继续训练的东西到这个字典中。
保存:
torch.save(modelA.state_dict(), PATH)
加载:
modelB = TheModelBClass(*args, **kwargs)
modelB.load_state_dict(torch.load(PATH), strict=False)
在迁移学习或者训练新的复杂模型时,加载部分模型是很常见的。利用经过训练的参数,即使只有少数参数可用,也将有助于预热训练过程,并且使模型更快收敛。
在加载部分模型参数进行预训练的时候,很可能会碰到键不匹配的情况(模型权重都是按键值对的形式保存并加载回来的)。因此,无论是缺少键还是多出键的情况,都可以通过在load_state_dict()
函数中设定strict
参数为False
来忽略不匹配的键。
如果想将某一层的参数加载到其他层,但是有些键不匹配,那么修改state_dict中参数的key可以解决这个问题。
GPU上保存,CPU上加载
保存:
torch.save(model.state_dict(), PATH)
加载:
device = torch.device('cpu')
model = TheModelClass(*args, **kwargs)
model.load_state_dict(torch.load(PATH, map_location=device))
当在CPU上加载一个GPU上训练的模型时,在torch.load()
中指定map_location=torch.device('cpu')
,此时,map_location
动态地将tensors的底层存储重新映射到CPU设备上。
上述代码只有在模型是在一块GPU上训练时才有效,如果模型在多个GPU上训练,那么在CPU上加载时,会得到类似如下错误:
KeyError: ‘unexpected key “module.conv1.weight” in state_dict’
原因是在使用多GPU训练并保存模型时,模型的参数名都带上了module
前缀,因此可以在加载模型时,把key中的这个前缀去掉:
# 原始通过DataParallel保存的文件
state_dict = torch.load('myfile.pth.tar')
# 创建一个不包含`module.`的新OrderedDict
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # 去掉 `module.`
new_state_dict[name] = v
# 加载参数
model.load_state_dict(new_state_dict)
GPU上保存,GPU上加载
保存:
torch.save(model.state_dict(), PATH)
加载:
device = torch.device("cuda")
model = TheModelClass(*args, **kwargs)
model.load_state_dict(torch.load(PATH))
model.to(device)
# 往模型中输入数据的时候不要忘记在任意tensor上调用input = input.to(device)
在把GPU上训练的模型加载到GPU上时,只需要使用model.to(torch.devie('cuda'))
将初始化的模型转换为CUDA优化模型。同时确保在模型所有的输入上使用.to(torch.device('cuda'))
。注意,调用my_tensor.to(device)
会返回一份在GPU上的my_tensor
的拷贝。不会覆盖原本的my_tensor
,因此要记得手动将tensor重写:my_tensor = my_tensor.to(torch.device('cuda'))
。
CPU上保存,GPU上加载
保存:
torch.save(model.state_dict(), PATH)
加载:
device = torch.device("cuda")
model = TheModelClass(*args, **kwargs)
model.load_state_dict(torch.load(PATH, map_location="cuda:0")) # 选择希望使用的GPU
model.to(device)
保存torch.nn.DataParallel
模型
保存:
torch.save(model.module.state_dict(), PATH)