- opencv学习:图像旋转的两种方法,旋转后的图片进行模板匹配代码实现
夜清寒风
学习opencv机器学习人工智能计算机视觉
图像旋转在图像处理中,rotate和rot90是两种常见的图像旋转方法,它们在功能和使用上有一些区别。下面我将分别介绍这两种方法,并解释它们的主要区别rot90方法rot90方法是NumPy提供的一种数组旋转函数,它主要用于对二维数组(如图像)进行90度的旋转。这个方法比较简单,只支持90度的倍数旋转,不支持任意角度旋转。使用NumPy进行旋转使用NumPy的rot90函数对模板图像进行旋转操作。
- opencv 学习 1
木木ainiks
opencv计算机视觉python
opencv学习的第一天#coding:utf-8importcv2ascv#首先读图片src=cv.imread(“img/1.jpg”)#设置图片的名字cv.namedWindow(“1”,cv.WINDOW_AUTOSIZE)#显示图片第一个参数设置图片名,第二个参数图片的地址cv.imshow(“1”,src)cv.waitKey(0)#将图片写入固定位置cv.imwrite(“img/2
- opencv学习:形态学操作和边缘检测算子
夜清寒风
opencv学习人工智能算法计算机视觉
cv2.morphologyEx()是OpenCV库中的一个函数,用于执行更复杂的形态学操作。这个函数可以执行开运算、闭运算、梯度运算、膨胀、腐蚀以及顶帽和黑帽转换等。这些操作通常用于图像预处理,如去除噪声、平滑边界、突出特征等。dst=cv2.morphologyEx(src,op,kernel[,dst[,anchor[,iterations[,borderType[,borderValue]
- 零基础Opencv学习(二)
随风逐流wrx
opencv学习人工智能
图像变换一、边缘检测1:边缘检测Cannycv::MatiamgeCan;cv::Canny(image,iamgeCan,3,9,3);cv::imshow("Canny",iamgeCan);///边缘检测高级用法Canny用法cv::Matdst,edge,gray;dst.create(image.size(),image.type());///图像转灰度图像cv::cvtColor(im
- opencv学习笔记19-opencv焊点(原点)计数
The_xz
opencv学习笔记
一、原理:opencv学习笔记13-opencv连通组件标记实现硬币计数二、不同情况思路:当焊点为背景时,进行反色处理(二值化后若焊点为背景,转化为前景)。三、示例代码:#include#include#include#include#include#includeusingnamespacecv;usingnamespacestd;intmain(){utils::logging::setLog
- opencv学习(十一)之绘图函数
梧桐栖鸦
OpenCV基础opencv2/3基础教程opencv直线circleellipsefillpolyopencv绘图函数
opencv中提供了很多绘图函数,在进行图像处理,对感兴趣区域进行标定时,就需要利用这些绘图函数。现在集中做一个归纳介绍。1.PointPoint常用来指定一幅二维图像中的点。如Pointpt;pt.x=10;pt.y=8;或Pointpt=Point(10,8);其指向的是在图像中(10,8)位置的一个像素点。查找Point引用可以在”core.hpp”文件发现如下语句:typedefPoint
- OpenCV学习路线图
superdont
计算机视觉opencv学习人工智能
下面是针对初学者设计的一个学习路线图:第1周:计算机视觉和OpenCV概述介绍计算机视觉及其应用领域讨论OpenCV的历史、特点和工作原理OpenCV的安装和配置(Windows/Linux/macOS)了解OpenCV的基本数据结构(cv::Mat等)第2周:OpenCV基础图像的基本操作(读取、显示、保存图片)图像的属性(色彩空间、像素访问与修改)图像的几何变换(缩放、旋转、剪切)第3周:图像
- 【Opencv学习】04-图像加法
R三哥哥啊
opencvopencv学习人工智能
文章目录前言一、图像加法混合1.1代码1.2运行结果二、图像的按位运算-组合相加2.1代码2.2运行结果示例:PPT平滑切换运行结果总结前言简单说就是介绍了两张图如何组合在一起。1、混合,透明度和颜色会发生改变2、组合,叠加起来。可以改变大小。3、两张图片如何平滑切换4、学会如何裁剪图片5、明白掩码操作6、如何将图片置于左侧右侧一、图像加法混合OpenCV中的加法与Numpy的加法是有所不同的。O
- OpenCV学习笔记:如何扫描图像、利用查找表和计时
weixin_33772645
人工智能c/c++测试
目的我们将探索以下问题的答案:如何遍历图像中的每一个像素?OpenCV的矩阵值是如何存储的?如何测试我们所实现算法的性能?查找表是什么?为什么要用它?测试用例这里我们测试的,是一种简单的颜色缩减方法。如果矩阵元素存储的是单通道像素,使用C或C++的无符号字符类型,那么像素可有256个不同值。但若是三通道图像,这种存储格式的颜色数就太多了(确切地说,有一千六百多万种)。用如此之多的颜色可能会对我们的
- OpenCV学习记录——形态学处理
KAIs32
树莓派——OpenCVopencv学习人工智能计算机视觉嵌入式硬件
文章目录前言一、腐蚀和膨胀二、高级形态学运算三、具体应用代码前言形态学是图像处理中最常用的技术之一,它主要用于从图像中提取有意义的形状信息,例如边界和连通区域,以便后续的识别工作能够捕捉到目标对象最重要的形状特征。此外,细化、像素化和修剪毛刺等技术也常用于图像的预处理和后处理,以增强图像质量。形态学转换主要有腐蚀和膨胀、开运算和闭运算、顶帽和底帽一、腐蚀和膨胀腐蚀和膨胀是两种最基本、最重要的形态学
- opencv学习记录——(15)模板匹配
蜡笔小新qqq
opencv学习计算机视觉
一、单模板匹配#include"opencv2/opencv.hpp"#includeusingnamespacestd;usingnamespacecv;voidmain(){///单模板匹配Mattemp=imread("temp.png");//模板图像Matsrc=imread("src.png");//待搜索图像即原图imshow("temp",temp);imshow("src",sr
- Opencv学习笔记——特征匹配
纸箱里的猫咪
Opencv学习笔记opencv计算机视觉学习
文章目录Brute-Force蛮力匹配1对1的匹配k对最佳匹配随机抽样一致算法(Randomsampleconsensus,RANSAC)单应性矩阵Brute-Force蛮力匹配 通过SIFT算法可以得到图像关键点,通过比较两张图像的关键点,也就是比较关键点向量之间的差异,Brute-Force蛮力匹配通过比较特征向量,离得最近的特征向量也就是最相似的。默认的是用归一化的欧氏距离。bf=cv2.
- OpenCV学习记录——特征匹配
KAIs32
树莓派——OpenCVopencv学习人工智能嵌入式硬件计算机视觉
文章目录前言一、暴力匹配步骤分析二、代码分析前言特征匹配是一种图像处理技术,用于在不同图像之间寻找相似的特征点,并将它们进行匹配。特征匹配在计算机视觉和图像处理领域中具有广泛的应用,包括目标识别、图像拼接、三维重建等。一、暴力匹配步骤分析暴力匹配是一种简单直接的匹配方法,它遍历所有特征点的描述符,并计算它们之间的距离。然后根据距离进行排序,选择距离最短的特征点作为匹配点。虽然暴力匹配方法简单,但在
- OpenCV学习记录——轮廓检测
KAIs32
树莓派——OpenCVopencv学习人工智能计算机视觉嵌入式硬件
文章目录前言一、寻找、绘制轮廓二、具体应用代码前言寻找目标图像的轮廓并绘制出该轮廓是我们进行图像识别时常用的手段,轮廓是图像中连续的边界线,可以用于物体检测、形状分析等应用。为了获取更高的准确性,会先进行二值化处理,在得到二进制图像后,寻找轮廓就是从黑色背景中找到白色物体,因此我们要找的对象应是白色,背景应该是黑色。一、寻找、绘制轮廓(一)寻找图像轮廓寻找图像轮廓函数如下:contours,hie
- OpenCV学习笔记(Python)—— 批量提取图像轮廓并保存结果到保持原始结构的输出目录
六个核桃Lu
OpenCV学习opencv人工智能python图像处理计算机视觉
批量处理图像,对每个图像提取轮廓内的区域并将轮廓外的区域设置为白色背景,然后保存处理后的图像到指定的输出目录,同时保持与输入目录相同的文件和目录结构。importcv2importnumpyasnpimportosfromtqdmimporttqdmdefprocess_image(input_path,output_path):#读取图像img=cv2.imread(input_path)ifi
- OpenCV学习记录——图像的绘制
KAIs32
树莓派——OpenCVopencv学习人工智能嵌入式硬件计算机视觉
文章目录前言一、绘制直线二、绘制矩形三、绘制圆形四、绘制文本前言我们在进行图像处理的过程中,通常需要进行划线、画矩形框锁定目标等操作来凸显指定目标,OpenCV提供了方便的绘图功能,可以进行直线、矩形、圆、文本文字等内容的绘制,这篇文章将记录OpenCV中图像的绘制相关内容。一、绘制直线绘制直线的函数如下:cv2.line(image,pt1,pt2,color,thickness)其中,五个参数
- OpenCV学习记录——阈值处理(全局阈值处理、自适应阈值处理)
KAIs32
树莓派——OpenCVopencv学习人工智能计算机视觉嵌入式硬件
文章目录一、学习目的二、图像二值化三、全局阈值处理四、自适应阈值处理一、学习目的在进行图像处理时,我们通常要进行颜色识别等一系列需要进行图像阈值处理的操作,今天我们就记录一下opencv进行阈值处理的一些基本操作和代码二、图像二值化我们首先要明白一个概念,图像二值化就是将图像上的像素点的灰度值设置为两个值,一般为0(表示黑色)和255(表示白色),可以将整个图像呈现出明显的黑白效果。最常用的方法就
- OpenCV学习记录——平滑处理
KAIs32
树莓派——OpenCVopencv学习人工智能嵌入式硬件计算机视觉
文章目录前言一、图像噪声二、图像平滑处理三、完整应用代码前言当我们用树莓派进行opencv图像处理时,摄像头所获取的图像质量通常会有所下降,此时,需要多种手段来优化图像的质量,提高图像识别的准度。今天所记录的是当图片经过传输等过程后出现的图像噪声现象及对应解决方法——平滑一、图像噪声在数字图像的采集、处理和传输过程中,可能会受到各种噪声的干扰,这会导致图像质量下降、图像变得模糊,甚至使图像的特征难
- OpenCV学习记录——边缘检测
KAIs32
树莓派——OpenCVopencv学习人工智能嵌入式硬件计算机视觉
文章目录前言一、边缘检测原理二、Canny边缘检测算法三、具体应用代码前言在做某些图像处理时,通常需要将识别到的物体边界提取出来,从而帮助我们实现目标检测,这就需要用到边缘检测,例如人脸识别和运动目标的检测都需要先进行边缘检测,这篇文章就记录一下边缘检测的原理及应用代码。一、边缘检测原理边缘检测是图像处理和计算机视觉中的基本问题,其目的在于标识数字图像中亮度变化明显的点,图像边缘检测大幅度地减少了
- opencv学习 机器学习
小猴啊0.0
opencv学习机器学习
Kmeansdoublecv::kmeans(InputArraydataintkInputOutputArraybestLabels//输出的所有样本的标签数组TermCriteriacriteriaintattempts//采样不同初始化标签的尝试次数intflag//中心点初始化方法,支持KMEANS_RANDOM_CENTERS//KMEANS_PP_CENTERS//KMEANS_USE
- opencv学习二值分析
小猴啊0.0
opencv学习人工智能
内容来源于《opencv4应用开发入门、进阶与工程化实践》二值分析:常见的二值化方法:基于全局阈值(threshold)得到的二值图像;基于自适应阈值(adaptiveThreshold)得到的二值图像;边缘检测(Canny)基于像素值范围(inRange)thresholdthresholdType介绍:THRESH_BINARY表示大于thresh的取maxval,否则取0;THRESH_BI
- 【Opencv学习】03-读取图片信息
R三哥哥啊
opencvopencv学习人工智能
前言几乎所有这些操作与Numpy的关系都比与OpenCV的关系更加紧密,因此熟练Numpy可以帮助我们写出性能更好的代码。Numpy是经过优化了的进行快速矩阵运算的软件包。所以我们不推荐逐个获取像素值并修改,这样会很慢,能有矩阵运算就不要用循环。读取像素点在计算机视觉和图像处理中,图像是由像素点组成的。每个像素点包含了颜色(在彩色图像中)和亮度(在灰度图像中)的信息。通过读取和操作这些像素点,我们
- 【Opencv学习】01-对图像进行简单的操作
R三哥哥啊
opencv学习python
首先了解一下什么是init.pyi文件文件init.pyi文件是Python中的类型提示文件,用于提供对特定包或模块的类型信息。它是类型提示的一种形式,用于描述包、模块、类、函数和变量的静态类型。在Python中,类型提示的目的是为了提供代码编辑器和静态类型检查工具更好的代码补全、类型检查和类型推断功能。init.pyi文件被放置在包或模块的目录中,并且可以包含该包或模块定义的类、函数、方法和变量
- 【Python_Opencv图像处理框架】信用卡数字识别项目
畅游星辰大海
#Python_Opencvopencvpython图像处理
写在前面本篇文章是opencv学习的第六篇文章,前面主要讲解了对图像的一些基本操作,这篇文章我们就开始大展身手,将前面所学的基础操作活学活用。既能复习基础操作,又能学到一些新的知识。作为初学者,我尽己所能,但仍会存在疏漏的地方,希望各位看官不吝指正写在中间(1)简单介绍我们通过opencv提供的一些函数,来实现基础操作,看完本篇文章,你就能轻松地将这信用卡上的数字识别出来该技术首先通过图像处理技术
- opencv学习 特征提取
小猴啊0.0
opencv学习人工智能
内容来源于《opencv4应用开发入门、进阶与工程化实践》图像金字塔略拉普拉斯金字塔对输入图像进行reduce操作会生成不同分辨率的图像,对这些图像进行expand操作,然后使用reduce减去expand之后的结果,就会得到拉普拉斯金字塔图像。详情可查看https://zhuanlan.zhihu.com/p/80362140图像金字塔融合拉普拉斯金字塔通过源图像减去先缩小再放大的图像构成,保留
- opencv学习形态学分析
小猴啊0.0
opencv学习人工智能
内容来源于《opencv4应用开发入门、进阶与工程化实践》膨胀操作与腐蚀操作膨胀操作一定程度上会把相邻的对象连接起来成为一个对象;腐蚀操作会让对象面积变小或者擦除小的对象。//膨胀操作voidcv::dilate(InputArraysrcOutputArraydstInputArraykernelPointanchor=Point(-1,-1)intiterations=1intborderTy
- OpenCV学习笔记2——视频的读取与处理
风痕天际
opencv学习笔记opencv学习笔记计算机视觉音视频
目录一、视频内容读取二、将视频中的每一帧转换为灰度图三、退出程序一、视频内容读取cv2中的“VideoCapture”函数可以捕获摄像头,用数字来控制不同的设备,如果是视频文件则直接指定路径。importcv2vc=cv2.VideoCapture('1.mp4')whileTrue:ret,frame=vc.read()ifframeisNone:breakifret==True:gray=cv
- OpenCV学习笔记4——边界填充
风痕天际
opencv学习笔记opencv学习笔记
边界填充,即将图片扩大一圈。代码如下:importcv2frommatplotlibimportpyplotaspltimg=cv2.imread('3.jpg')top_size,bottom_size,left_size,right_size=(50,50,50,50)replicate=cv2.copyMakeBorder(img,top_size,bottom_size,left_size
- OpenCV学习笔记1——图像读取与信息提取
风痕天际
opencv学习笔记opencvpython计算机视觉
目录一、计算机眼中的图像二、通过代码对图像进行操作1.图像的读取2.图像的显示三、将图像读取为灰度图像四、保存图像一、计算机眼中的图像在计算机中,图像被视为一个高度×宽度的像素矩阵,每一个矩阵内存放着该像素的色彩信息。计算机中大多采用RGB颜色标准,即通过对红(R)、绿(G)、蓝(B)三个颜色通道的变化以及它们相互之间的叠加来得到各式各样的颜色。部分颜色对应RGB值:白色:rgb(255,255,
- opencv学习-几种角点检测方法
wyw0000
opencvopencv学习计算机视觉
角点基本概念角点通常被定义为两条边的交点,或者说,角点的局部邻域应该具有两个不同区域的不同方向的边界。角点检测(CornerDetection)是计算机视觉系统中获取图像特征的一种方法,广泛应用于运动检测、图像匹配、视频跟踪、三维重建和目标识别等,也可称为特征点检测。目前,角点检测算法还不是十分完善,许多算法需要依赖大量的训练集和冗余数据来防止和减少错误的特征的出现。对于角点检测算法的重要评价标准
- html页面js获取参数值
0624chenhong
html
1.js获取参数值js
function GetQueryString(name)
{
var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&|$)");
var r = windo
- MongoDB 在多线程高并发下的问题
BigCat2013
mongodbDB高并发重复数据
最近项目用到 MongoDB , 主要是一些读取数据及改状态位的操作. 因为是结合了最近流行的 Storm进行大数据的分析处理,并将分析结果插入Vertica数据库,所以在多线程高并发的情境下, 会发现 Vertica 数据库中有部分重复的数据. 这到底是什么原因导致的呢?笔者开始也是一筹莫 展,重复去看 MongoDB 的 API , 终于有了新发现 :
com.mongodb.DB 这个类有
- c++ 用类模版实现链表(c++语言程序设计第四版示例代码)
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T>
class Node
{
private:
Node<T> * next;
public:
T data;
- 最近情况
麦田的设计者
感慨考试生活
在五月黄梅天的岁月里,一年两次的软考又要开始了。到目前为止,我已经考了多达三次的软考,最后的结果就是通过了初级考试(程序员)。人啊,就是不满足,考了初级就希望考中级,于是,这学期我就报考了中级,明天就要考试。感觉机会不大,期待奇迹发生吧。这个学期忙于练车,写项目,反正最后是一团糟。后天还要考试科目二。这个星期真的是很艰难的一周,希望能快点度过。
- linux系统中用pkill踢出在线登录用户
被触发
linux
由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍所以需要有时踢出指定的用户
1/#who 查出当前有那些终端登录(用 w 命令更详细)
# who
root pts/0 2010-10-28 09:36 (192
- 仿QQ聊天第二版
肆无忌惮_
qq
在第一版之上的改进内容:
第一版链接:
http://479001499.iteye.com/admin/blogs/2100893
用map存起来号码对应的聊天窗口对象,解决私聊的时候所有消息发到一个窗口的问题.
增加ViewInfo类,这个是信息预览的窗口,如果是自己的信息,则可以进行编辑.
信息修改后上传至服务器再告诉所有用户,自己的窗口
- java读取配置文件
知了ing
1,java读取.properties配置文件
InputStream in;
try {
in = test.class.getClassLoader().getResourceAsStream("config/ipnetOracle.properties");//配置文件的路径
Properties p = new Properties()
- __attribute__ 你知多少?
矮蛋蛋
C++gcc
原文地址:
http://www.cnblogs.com/astwish/p/3460618.html
GNU C 的一大特色就是__attribute__ 机制。__attribute__ 可以设置函数属性(Function Attribute )、变量属性(Variable Attribute )和类型属性(Type Attribute )。
__attribute__ 书写特征是:
- jsoup使用笔记
alleni123
java爬虫JSoup
<dependency>
<groupId>org.jsoup</groupId>
<artifactId>jsoup</artifactId>
<version>1.7.3</version>
</dependency>
2014/08/28
今天遇到这种形式,
- JAVA中的集合 Collectio 和Map的简单使用及方法
百合不是茶
listmapset
List ,set ,map的使用方法和区别
java容器类类库的用途是保存对象,并将其分为两个概念:
Collection集合:一个独立的序列,这些序列都服从一条或多条规则;List必须按顺序保存元素 ,set不能重复元素;Queue按照排队规则来确定对象产生的顺序(通常与他们被插入的
- 杀LINUX的JOB进程
bijian1013
linuxunix
今天发现数据库一个JOB一直在执行,都执行了好几个小时还在执行,所以想办法给删除掉
系统环境:
ORACLE 10G
Linux操作系统
操作步骤如下:
第一步.查询出来那个job在运行,找个对应的SID字段
select * from dba_jobs_running--找到job对应的sid
&n
- Spring AOP详解
bijian1013
javaspringAOP
最近项目中遇到了以下几点需求,仔细思考之后,觉得采用AOP来解决。一方面是为了以更加灵活的方式来解决问题,另一方面是借此机会深入学习Spring AOP相关的内容。例如,以下需求不用AOP肯定也能解决,至于是否牵强附会,仁者见仁智者见智。
1.对部分函数的调用进行日志记录,用于观察特定问题在运行过程中的函数调用
- [Gson六]Gson类型适配器(TypeAdapter)
bit1129
Adapter
TypeAdapter的使用动机
Gson在序列化和反序列化时,默认情况下,是按照POJO类的字段属性名和JSON串键进行一一映射匹配,然后把JSON串的键对应的值转换成POJO相同字段对应的值,反之亦然,在这个过程中有一个JSON串Key对应的Value和对象之间如何转换(序列化/反序列化)的问题。
以Date为例,在序列化和反序列化时,Gson默认使用java.
- 【spark八十七】给定Driver Program, 如何判断哪些代码在Driver运行,哪些代码在Worker上执行
bit1129
driver
Driver Program是用户编写的提交给Spark集群执行的application,它包含两部分
作为驱动: Driver与Master、Worker协作完成application进程的启动、DAG划分、计算任务封装、计算任务分发到各个计算节点(Worker)、计算资源的分配等。
计算逻辑本身,当计算任务在Worker执行时,执行计算逻辑完成application的计算任务
- nginx 经验总结
ronin47
nginx 总结
深感nginx的强大,只学了皮毛,把学下的记录。
获取Header 信息,一般是以$http_XX(XX是小写)
获取body,通过接口,再展开,根据K取V
获取uri,以$arg_XX
&n
- 轩辕互动-1.求三个整数中第二大的数2.整型数组的平衡点
bylijinnan
数组
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class ExoWeb {
public static void main(String[] args) {
ExoWeb ew=new ExoWeb();
System.out.pri
- Netty源码学习-Java-NIO-Reactor
bylijinnan
java多线程netty
Netty里面采用了NIO-based Reactor Pattern
了解这个模式对学习Netty非常有帮助
参考以下两篇文章:
http://jeewanthad.blogspot.com/2013/02/reactor-pattern-explained-part-1.html
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
- AOP通俗理解
cngolon
springAOP
1.我所知道的aop 初看aop,上来就是一大堆术语,而且还有个拉风的名字,面向切面编程,都说是OOP的一种有益补充等等。一下子让你不知所措,心想着:怪不得很多人都和 我说aop多难多难。当我看进去以后,我才发现:它就是一些java基础上的朴实无华的应用,包括ioc,包括许许多多这样的名词,都是万变不离其宗而 已。 2.为什么用aop&nb
- cursor variable 实例
ctrain
variable
create or replace procedure proc_test01
as
type emp_row is record(
empno emp.empno%type,
ename emp.ename%type,
job emp.job%type,
mgr emp.mgr%type,
hiberdate emp.hiredate%type,
sal emp.sal%t
- shell报bash: service: command not found解决方法
daizj
linuxshellservicejps
今天在执行一个脚本时,本来是想在脚本中启动hdfs和hive等程序,可以在执行到service hive-server start等启动服务的命令时会报错,最终解决方法记录一下:
脚本报错如下:
./olap_quick_intall.sh: line 57: service: command not found
./olap_quick_intall.sh: line 59
- 40个迹象表明你还是PHP菜鸟
dcj3sjt126com
设计模式PHP正则表达式oop
你是PHP菜鸟,如果你:1. 不会利用如phpDoc 这样的工具来恰当地注释你的代码2. 对优秀的集成开发环境如Zend Studio 或Eclipse PDT 视而不见3. 从未用过任何形式的版本控制系统,如Subclipse4. 不采用某种编码与命名标准 ,以及通用约定,不能在项目开发周期里贯彻落实5. 不使用统一开发方式6. 不转换(或)也不验证某些输入或SQL查询串(译注:参考PHP相关函
- Android逐帧动画的实现
dcj3sjt126com
android
一、代码实现:
private ImageView iv;
private AnimationDrawable ad;
@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout
- java远程调用linux的命令或者脚本
eksliang
linuxganymed-ssh2
转载请出自出处:
http://eksliang.iteye.com/blog/2105862
Java通过SSH2协议执行远程Shell脚本(ganymed-ssh2-build210.jar)
使用步骤如下:
1.导包
官网下载:
http://www.ganymed.ethz.ch/ssh2/
ma
- adb端口被占用问题
gqdy365
adb
最近重新安装的电脑,配置了新环境,老是出现:
adb server is out of date. killing...
ADB server didn't ACK
* failed to start daemon *
百度了一下,说是端口被占用,我开个eclipse,然后打开cmd,就提示这个,很烦人。
一个比较彻底的解决办法就是修改
- ASP.NET使用FileUpload上传文件
hvt
.netC#hovertreeasp.netwebform
前台代码:
<asp:FileUpload ID="fuKeleyi" runat="server" />
<asp:Button ID="BtnUp" runat="server" onclick="BtnUp_Click" Text="上 传" />
- 代码之谜(四)- 浮点数(从惊讶到思考)
justjavac
浮点数精度代码之谜IEEE
在『代码之谜』系列的前几篇文章中,很多次出现了浮点数。 浮点数在很多编程语言中被称为简单数据类型,其实,浮点数比起那些复杂数据类型(比如字符串)来说, 一点都不简单。
单单是说明 IEEE浮点数 就可以写一本书了,我将用几篇博文来简单的说说我所理解的浮点数,算是抛砖引玉吧。 一次面试
记得多年前我招聘 Java 程序员时的一次关于浮点数、二分法、编码的面试, 多年以后,他已经称为了一名很出色的
- 数据结构随记_1
lx.asymmetric
数据结构笔记
第一章
1.数据结构包括数据的
逻辑结构、数据的物理/存储结构和数据的逻辑关系这三个方面的内容。 2.数据的存储结构可用四种基本的存储方法表示,它们分别是
顺序存储、链式存储 、索引存储 和 散列存储。 3.数据运算最常用的有五种,分别是
查找/检索、排序、插入、删除、修改。 4.算法主要有以下五个特性:
输入、输出、可行性、确定性和有穷性。 5.算法分析的
- linux的会话和进程组
网络接口
linux
会话: 一个或多个进程组。起于用户登录,终止于用户退出。此期间所有进程都属于这个会话期。会话首进程:调用setsid创建会话的进程1.规定组长进程不能调用setsid,因为调用setsid后,调用进程会成为新的进程组的组长进程.如何保证? 先调用fork,然后终止父进程,此时由于子进程的进程组ID为父进程的进程组ID,而子进程的ID是重新分配的,所以保证子进程不会是进程组长,从而子进程可以调用se
- 二维数组 元素的连续求解
1140566087
二维数组ACM
import java.util.HashMap;
public class Title {
public static void main(String[] args){
f();
}
// 二位数组的应用
//12、二维数组中,哪一行或哪一列的连续存放的0的个数最多,是几个0。注意,是“连续”。
public static void f(){
- 也谈什么时候Java比C++快
windshome
javaC++
刚打开iteye就看到这个标题“Java什么时候比C++快”,觉得很好笑。
你要比,就比同等水平的基础上的相比,笨蛋写得C代码和C++代码,去和高手写的Java代码比效率,有什么意义呢?
我是写密码算法的,深刻知道算法C和C++实现和Java实现之间的效率差,甚至也比对过C代码和汇编代码的效率差,计算机是个死的东西,再怎么优化,Java也就是和C