自编码网络(二)—— 提取图片的二维特征,并利用二维特征还原图片

在自编码网络中使用线性解码器对MNIST数据特征进行再压缩,并将其映射到直角坐标系上。

这里使用4层逐渐压缩将784维度分别压缩成256、64、16、2这四个特征向量。

1.引入图文件,定义学习参数变量

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/data/", one_hot = True)

#定义学习率
learning_rate = 0.01
#隐藏层设置
n_hidden_1 = 256
n_hidden_2 = 64
n_hidden_3 = 16
n_hidden_4 = 2
n_input = 784

#定义输入占位符
x = tf.placeholder("float", [None, n_input])
y = x
weights = {
    'encoder_h1':tf.Variable(tf.random_normal([n_input, n_hidden_1],)),
    'encoder_h2':tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2], )),
    'encoder_h3':tf.Variable(tf.random_normal([n_hidden_2, n_hidden_3], )),
    'encoder_h4':tf.Variable(tf.random_normal([n_hidden_3, n_hidden_4], )),

    'decoder_h1':tf.Variable(tf.random_normal([n_hidden_4 , n_hidden_3 ,])),
    'decoder_h2': tf.Variable(tf.random_normal([n_hidden_3, n_hidden_2, ])),
    'decoder_h3': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1, ])),
    'decoder_h4': tf.Variable(tf.random_normal([n_hidden_1, n_input, ])),

}

biases = {
    'encoder_b1':tf.Variable(tf.zeros([n_hidden_1])),
    'encoder_b2': tf.Variable(tf.zeros([n_hidden_2])),
    'encoder_b3': tf.Variable(tf.zeros([n_hidden_3])),
    'encoder_b4': tf.Variable(tf.zeros([n_hidden_4])),


    'decoder_b1': tf.Variable(tf.zeros([n_hidden_3])),
    'decoder_b2': tf.Variable(tf.zeros([n_hidden_2])),
    'decoder_b3': tf.Variable(tf.zeros([n_hidden_1])),
    'decoder_b4': tf.Variable(tf.zeros([n_input])),

}

2.定义网络模型

下面的代码是定义编码和解码的网络结构,这里使用了线性解码器。在编码的最后一层,没有进行sigmoid变换,这是因为生成的二维数据其数据特征已经变得极为主要,所以希望它透视传到解码器中,少一些变换可以最大的保存原有的主要特征。

#定义网络模型
def encoder(x):
    layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']), biases['encoder_b1']))
    layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']), biases['encoder_b2']))
    layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['encoder_h3']), biases['encoder_b3']))
    layer_4 = tf.nn.sigmoid(tf.add(tf.matmul(layer_3 , weights['encoder_h4']), biases['encoder_b4']))
    return layer_4



def decoder(x):
    layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']), biases['decoder_b1']))
    layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']), biases['decoder_b2']))
    layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['decoder_h3']), biases['decoder_b3']))
    layer_4 = tf.nn.sigmoid(tf.add(tf.matmul(layer_3 , weights['decoder_h4']), biases['decoder_b4']))
    return layer_4

#构建模型
encoder_op = encoder(x)
y_pred = decoder(encoder_op)
cost = tf.reduce_mean(tf.pow(y-y_pred, 2))
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost)

3.开始训练

#训练
training_epochs = 20
batch_size = 256
display_step = 1

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    total_batch = int(mnist.train.num_examples/batch_size)
    #启动循环开始循环
    for epoch in range(training_epochs):
        #遍历全部数据集
        for i in range(total_batch):
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)
            _,c = sess.run([optimizer, cost], feed_dict = {x: batch_xs})
        #显示训练中的详细信息
        if epoch % display_step == 0:
            print("Epoch:" , '%04d' %(epoch+1),"cost=","{:.9f}".format(c))

    print("Finished!!")

输出结果如下:

Epoch: 0001 cost= 0.090200812
Epoch: 0002 cost= 0.075068496
Epoch: 0003 cost= 0.067612931
Epoch: 0004 cost= 0.065960728
Epoch: 0005 cost= 0.063145392
Epoch: 0006 cost= 0.061458681
Epoch: 0007 cost= 0.060466096
Epoch: 0008 cost= 0.056512658
Epoch: 0009 cost= 0.050669905
Epoch: 0010 cost= 0.054181825
Epoch: 0011 cost= 0.052422021
Epoch: 0012 cost= 0.053191587
Epoch: 0013 cost= 0.052487034
Epoch: 0014 cost= 0.051621195
Epoch: 0015 cost= 0.050946057
Epoch: 0016 cost= 0.051289815
Epoch: 0017 cost= 0.052038588
Epoch: 0018 cost= 0.050835565
Epoch: 0019 cost= 0.050824545
Epoch: 0020 cost= 0.049340181
Finished!!

通过自编码网络将748维的数据压缩成二维,用二维数据代替784维,这就是自编码网络的神奇之处。

4.对比输入和输出

    #可视化结果
    show_num = 10
    encode_decode = sess.run(y_pred, feed_dict = {x: mnist.test.images[:show_num]})
    #将自编码输出结果和原始样本显示出来
    f, a = plt.subplots(2, 10, figsize = (10, 2))
    for i in range(show_num):
        a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28)))
        a[1][i].imshow(np.reshape(encode_decode[i], (28, 28)))
    plt.show()

执行上面代码,生成如下所示图片:

自编码网络(二)—— 提取图片的二维特征,并利用二维特征还原图片_第1张图片

5.显示数据的二维特征

将数据压缩后的二维特征显示出来


    #显示数据的二维特征
    aa = [np.argmax(l)for l in mnist.test.labels]#将one_hot转成一般编码
    encoder_result = sess.run(encoder_op, feed_dict={x: mnist.test.images})
    plt.scatter(encoder_result[:,0], encoder_result[:,1], c=aa)
    plt.colorbar()
    plt.show()

执行上面代码,生成如下所示图片:

自编码网络(二)—— 提取图片的二维特征,并利用二维特征还原图片_第2张图片

 

你可能感兴趣的:(深度学习,TensorFlow)