随机森林

        随机森林是一种集成算法(Ensemble Learning),它属于Bagging类型,通过组合多个弱分类器,最终结果通过投票或取均值,使得整体模型的结果具有较高的精确度和泛化性能。其可以取得不错成绩,主要归功于“随机”和“森林”,一个使它具有抗过拟合能力,一个使它更加精准。

        特征选择目前比较流行的方法是信息增益、增益率、基尼系数和卡方检验。这里主要介绍基于基尼系数(GINI)的特征选择,因为随机森林采用的CART决策树就是基于基尼系数选择特征的。

        

一:特征重要性

在随机森林中某个特征X的重要性的计算方法如下:

1:对于随机森林中的每一颗决策树,使用相应的OOB(袋外数据)数据来计算它的袋外数据误差,记为errOOB1.

2:  随机地对袋外数据OOB所有样本的特征X加入噪声干扰(就可以随机的改变样本在特征X处的值),再次计算它的袋外数据误差,记为errOOB2.

3:假设随机森林中有Ntree棵树,那么对于特征X的重要性=∑(errOOB2-errOOB1)/Ntree,之所以可以用这个表达式来作为相应特征的重要性的度量值是因为:若给某个特征随机加入噪声之后,袋外的准确率大幅度降低,则说明这个特征对于样本的分类结果影响很大,也就是说它的重要程度比较高。


你可能感兴趣的:(随机森林)