[ NLP ] 自然语言处理必读论文及预训练模型(2019.9.4更)

 

【 RoBERTa 】

Liu Y, Ott M, Goyal N, et al. RoBERTa: A Robustly Optimized BERT Pretraining Approach[J]. arXiv preprint arXiv:1907.11692, 2019.

{ GitHub: https://github.com/brightmart/roberta_zh }

 

【 OpenAI GPT2 】

Radford, A., et al. (2019). "Language models are unsupervised multitask learners." OpenAI Blog 1(8).

{ GitHub: https://github.com/openai/gpt-2 }

 

【 XLNet 】

Yang, Z., et al. (2019). "XLNet: Generalized Autoregressive Pretraining for Language Understanding." arXiv preprint arXiv:1906.08237.

{ GitHub: https://github.com/zihangdai/xlnet }

{ Chinese-pretrained-model GitHub: https://github.com/ymcui/Chinese-PreTrained-XLNet }

 

【 BERT wwm - ext 】

{ GitHub: https://github.com/ymcui/Chinese-BERT-wwm }

 

【 BERT wwm】

Cui, Y., et al. (2019). "Pre-Training with Whole Word Masking for Chinese BERT." arXiv preprint arXiv:1906.08101.

哈工大讯飞联合发布全词覆盖中文BERT预训练模型

{ GitHub: https://github.com/ymcui/Chinese-BERT-wwm }

 

【 BERT 】

Devlin, J., et al. (2018). "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv 2018." arXiv preprint arXiv:1810.04805.

{ GitHub: BERT }

 

【 ELMo 】

Peters, M. E., et al. (2018). "Deep contextualized word representations." arXiv preprint arXiv:1802.05365. NAACL2018最佳论文

 

【 OpenAI GPT 】

Radford, A., et al. (2018). "Improving language understanding by generative pre-training." URL https://s3-us-west-2. amazonaws. com/openai-assets/research-covers/languageunsupervised/language understanding paper. pdf.

 

【 word2vec (Skip-gram model)】

Mikolov, T., et al. (2013). Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems. NIPS

 

【 Attention 】

Vaswani, A., et al. (2017). Attention is all you need. Advances in neural information processing systems.

 

中文词向量:

腾讯800W中文词 song yan老师出品 https://ai.tencent.com/ailab/nlp/embedding.html

你可能感兴趣的:(nlp)