LeakCanary 是由 Square 开源的针对 Android
和 Java
的内存泄漏检测工具。
LeakCanary
的集成过程很简单,首先在 build.gradle
文件中添加依赖:
dependencies {
debugImplementation 'com.squareup.leakcanary:leakcanary-android:1.5.4'
releaseImplementation 'com.squareup.leakcanary:leakcanary-android-no-op:1.5.4'
}
debug
和 release
版本中使用的是不同的库。LeakCanary
运行时会经常执行 GC
操作,在 release
版本中会影响效率。android-no-op
版本中基本没有逻辑实现,用于 release
版本。
然后实现自己的 Application
类:
public class ExampleApplication extends Application {
public void onCreate() {
super.onCreate();
if (LeakCanary.isInAnalyzerProcess(this)) {
// This process is dedicated to LeakCanary for heap analysis.
// You should not init your app in this process.
return;
}
LeakCanary.install(this);
// Normal app init code...
}
}
这样就集成完成了。当 LeakCanary
检测到内存泄露时,会自动弹出 Notification
通知开发者发生内存泄漏的 Activity
和引用链,以便进行修复。
从入口函数 LeakCanary.install(this)
开始分析:
LeakCanary.install
LeakCanary.java
/**
* Creates a {@link RefWatcher} that works out of the box, and starts watching activity
* references (on ICS+).
*/
public static RefWatcher install(Application application) {
return refWatcher(application).listenerServiceClass(DisplayLeakService.class)
.excludedRefs(AndroidExcludedRefs.createAppDefaults().build())
.buildAndInstall();
}
LeakCanary.refWatcherLeakCanary.java
/** Builder to create a customized {@link RefWatcher} with appropriate Android defaults. */
public static AndroidRefWatcherBuilder refWatcher(Context context) {
return new AndroidRefWatcherBuilder(context);
}
refWatcher()
方法新建了一个 AndroidRefWatcherBuilder
对象,该对象继承于 RefWatcherBuilder
类,配置了一些默认参数,利用建造者构建一个 RefWatcher
对象。
AndroidRefWatcherBuilder.listenerServiceClassAndroidRefWatcherBuilder.java
public AndroidRefWatcherBuilder listenerServiceClass(
Class extends AbstractAnalysisResultService> listenerServiceClass) {
return heapDumpListener(new ServiceHeapDumpListener(context, listenerServiceClass));
}
RefWatcherBuilder.java
/** @see HeapDump.Listener */
public final T heapDumpListener(HeapDump.Listener heapDumpListener) {
this.heapDumpListener = heapDumpListener;
return self();
}
DisplayLeakService.java
/**
* Logs leak analysis results, and then shows a notification which will start {@link
* DisplayLeakActivity}.
*
* You can extend this class and override {@link #afterDefaultHandling(HeapDump, AnalysisResult,
* String)} to add custom behavior, e.g. uploading the heap dump.
*/
public class DisplayLeakService extends AbstractAnalysisResultService {}
listenerServiceClass()
方法绑定了一个后台服务 DisplayLeakService
,这个服务主要用来分析内存泄漏结果并发送通知。你可以继承并重写这个类来进行一些自定义操作,比如上传分析结果等。
RefWatcherBuilder.excludedRefsRefWatcherBuilder.java
public final T excludedRefs(ExcludedRefs excludedRefs) {
this.excludedRefs = excludedRefs;
return self();
}
AndroidExcludedRefs.java
/**
* This returns the references in the leak path that can be ignored for app developers. This
* doesn't mean there is no memory leak, to the contrary. However, some leaks are caused by bugs
* in AOSP or manufacturer forks of AOSP. In such cases, there is very little we can do as app
* developers except by resorting to serious hacks, so we remove the noise caused by those leaks.
*/
public static ExcludedRefs.Builder createAppDefaults() {
return createBuilder(EnumSet.allOf(AndroidExcludedRefs.class));
}
public static ExcludedRefs.Builder createBuilder(EnumSet
ExcludedRefs.Builder excluded = ExcludedRefs.builder();
for (AndroidExcludedRefs ref : refs) {
if (ref.applies) {
ref.add(excluded);
((ExcludedRefs.BuilderWithParams) excluded).named(ref.name());
}
}
return excluded;
}
excludedRefs()
方法定义了一些对于开发者可以忽略的路径,意思就是即使这里发生了内存泄漏,LeakCanary
也不会弹出通知。这大多是系统 Bug 导致的,无需用户进行处理。
AndroidRefWatcherBuilder.buildAndInstall
最后调用 buildAndInstall()
方法构建 RefWatcher
实例并开始监听 Activity
的引用:
AndroidRefWatcherBuilder.java
/**
* Creates a {@link RefWatcher} instance and starts watching activity references (on ICS+).
*/
public RefWatcher buildAndInstall() {
RefWatcher refWatcher = build();
if (refWatcher != DISABLED) {
LeakCanary.enableDisplayLeakActivity(context);
ActivityRefWatcher.install((Application) context, refWatcher);
}
return refWatcher;
}
看一下主要的 build()
和 install()
方法:
RefWatcherBuilder.java
/** Creates a {@link RefWatcher}. */
public final RefWatcher build() {
if (isDisabled()) {
return RefWatcher.DISABLED;
}
ExcludedRefs excludedRefs = this.excludedRefs;
if (excludedRefs == null) {
excludedRefs = defaultExcludedRefs();
}
HeapDump.Listener heapDumpListener = this.heapDumpListener;
if (heapDumpListener == null) {
heapDumpListener = defaultHeapDumpListener();
}
DebuggerControl debuggerControl = this.debuggerControl;
if (debuggerControl == null) {
debuggerControl = defaultDebuggerControl();
}
HeapDumper heapDumper = this.heapDumper;
if (heapDumper == null) {
heapDumper = defaultHeapDumper();
}
WatchExecutor watchExecutor = this.watchExecutor;
if (watchExecutor == null) {
watchExecutor = defaultWatchExecutor();
}
GcTrigger gcTrigger = this.gcTrigger;
if (gcTrigger == null) {
gcTrigger = defaultGcTrigger();
}
return new RefWatcher(watchExecutor, debuggerControl, gcTrigger, heapDumper, heapDumpListener,
excludedRefs);
}
build()
方法利用建造者模式构建 RefWatcher
实例,看一下其中的主要参数:
watchExecutor
: 线程控制器,在 onDestroy()
之后并且主线程空闲时执行内存泄漏检测
debuggerControl
: 判断是否处于调试模式,调试模式中不会进行内存泄漏检测
gcTrigger
: 用于 GC
,watchExecutor
首次检测到可能的内存泄漏,会主动进行 GC
,GC
之后会再检测一次,仍然泄漏的判定为内存泄漏,进行后续操作
heapDumper
: dump
内存泄漏处的 heap
信息,写入 hprof
文件
heapDumpListener
: 解析完 hprof
文件并通知 DisplayLeakService
弹出提醒
excludedRefs
: 排除可以忽略的泄漏路径
LeakCanary.enableDisplayLeakActivity
接下来就是最核心的 install()
方法,这里就开始观察 Activity
的引用了。在这之前还执行了一步操作,LeakCanary.enableDisplayLeakActivity(context);
:
public static void enableDisplayLeakActivity(Context context) {
setEnabled(context, DisplayLeakActivity.class, true);
}
最后执行到 LeakCanaryInternals#setEnabledBlocking
:
public static void setEnabledBlocking(Context appContext, Class> componentClass,
boolean enabled) {
ComponentName component = new ComponentName(appContext, componentClass);
PackageManager packageManager = appContext.getPackageManager();
int newState = enabled ? COMPONENT_ENABLED_STATE_ENABLED : COMPONENT_ENABLED_STATE_DISABLED;
// Blocks on IPC.
packageManager.setComponentEnabledSetting(component, newState, DONT_KILL_APP);
}
这里启用了 DisplayLeakActivity
并且显示应用图标。注意,这是指的不是你自己的应用图标,是一个单独的 LeakCanary
的应用,用于展示内存泄露历史的,入口函数是 DisplayLeakActivity
,在 AndroidManifest.xml 中可以看到默认情况下 android:enabled="false"
:
<activity
android:theme="@style/leak_canary_LeakCanary.Base"
android:name=".internal.DisplayLeakActivity"
android:process=":leakcanary"
android:enabled="false"
android:label="@string/leak_canary_display_activity_label"
android:icon="@mipmap/leak_canary_icon"
android:taskAffinity="com.squareup.leakcanary.${applicationId}"
>
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
intent-filter>
activity>
ActivityRefWatcher.java
public static void install(Application application, RefWatcher refWatcher) {
new ActivityRefWatcher(application, refWatcher).watchActivities();
}
public void watchActivities() {
// Make sure you don't get installed twice.
stopWatchingActivities();
application.registerActivityLifecycleCallbacks(lifecycleCallbacks);
}
watchActivities()
方法中先解绑生命周期回调注册 lifecycleCallbacks
,再重新绑定,避免重复绑定。lifecycleCallbacks
监听了 Activity
的各个生命周期,在 onDestroy()
中开始检测当前 Activity
的引用。
private final Application.ActivityLifecycleCallbacks lifecycleCallbacks =
new Application.ActivityLifecycleCallbacks() {
public void onActivityCreated(Activity activity, Bundle savedInstanceState) {
}
public void onActivityStarted(Activity activity) {
}
public void onActivityResumed(Activity activity) {
}
public void onActivityPaused(Activity activity) {
}
public void onActivityStopped(Activity activity) {
}
public void onActivitySaveInstanceState(Activity activity, Bundle outState) {
}
public void onActivityDestroyed(Activity activity) {
ActivityRefWatcher.this.onActivityDestroyed(activity);
}
};
void onActivityDestroyed(Activity activity) {
refWatcher.watch(activity);
}
下面着重分析 RefWatcher
是如何检测 Activity
的。
RefWatcher.watch
调用 RefWatcher#watch
检测 Activity
。RefWatcher.java
/**
* Identical to {@link #watch(Object, String)} with an empty string reference name.
*
* @see #watch(Object, String)
*/
public void watch(Object watchedReference) {
watch(watchedReference, "");
}
/**
* Watches the provided references and checks if it can be GCed. This method is non blocking,
* the check is done on the {@link WatchExecutor} this {@link RefWatcher} has been constructed
* with.
*
* @param referenceName An logical identifier for the watched object.
*/
public void watch(Object watchedReference, String referenceName) {
if (this == DISABLED) {
return;
}
checkNotNull(watchedReference, "watchedReference");
checkNotNull(referenceName, "referenceName");
final long watchStartNanoTime = System.nanoTime();
String key = UUID.randomUUID().toString();
retainedKeys.add(key);
final KeyedWeakReference reference =
new KeyedWeakReference(watchedReference, key, referenceName, queue);
ensureGoneAsync(watchStartNanoTime, reference);
}
watch()
方法的参数是 Object
,LeakCanary
并不仅仅是针对 Android
的,它可以检测任何对象的内存泄漏,原理都是一致的。
这里出现了几个新面孔,先来了解一下各自是什么:
retainedKeys
: 一个 Set
集合,每个检测的对象都对应着一个唯一的 key
,存储在 retainedKeys
中
KeyedWeakReference
: 自定义的弱引用,持有检测对象和对用的 key
值
final class KeyedWeakReference extends WeakReference<Object> {
public final String key;
public final String name;
KeyedWeakReference(Object referent, String key, String name,
ReferenceQueue
queue
: ReferenceQueue
对象,和 KeyedWeakReference
配合使用
这里有个小知识点,弱引用和引用队列 ReferenceQueue
联合使用时,如果弱引用持有的对象被垃圾回收,Java 虚拟机就会把这个弱引用加入到与之关联的引用队列中。即 KeyedWeakReference
持有的 Activity
对象如果被垃圾回收,该对象就会加入到引用队列 queue
中。
接着看看具体的内存泄漏判断过程:
RefWatcher.ensureGoneAsync
private void ensureGoneAsync(final long watchStartNanoTime, final KeyedWeakReference reference) {
watchExecutor.execute(new Retryable() {
public Retryable.Result run() {
return ensureGone(reference, watchStartNanoTime);
}
});
}
通过 watchExecutor
执行检测操作,这里的 watchExecutor
是 AndroidWatchExecutor
对象。
protected WatchExecutor defaultWatchExecutor() {
return new AndroidWatchExecutor(DEFAULT_WATCH_DELAY_MILLIS);
}
DEFAULT_WATCH_DELAY_MILLIS
为 5 s。
public AndroidWatchExecutor(long initialDelayMillis) {
mainHandler = new Handler(Looper.getMainLooper());
HandlerThread handlerThread = new HandlerThread(LEAK_CANARY_THREAD_NAME);
handlerThread.start();
backgroundHandler = new Handler(handlerThread.getLooper());
this.initialDelayMillis = initialDelayMillis;
maxBackoffFactor = Long.MAX_VALUE / initialDelayMillis;
}
看看其中用到的几个对象:
mainHandler
: 主线程消息队列
handlerThread
: 后台线程,HandlerThread
对象,线程名为 LeakCanary-Heap-Dump
backgroundHandler
: 上面的后台线程的消息队列
initialDelayMillis
: 5 s,即之前的 DEFAULT_WATCH_DELAY_MILLIS
public void execute(Retryable retryable) {
if (Looper.getMainLooper().getThread() == Thread.currentThread()) {
waitForIdle(retryable, 0);
} else {
postWaitForIdle(retryable, 0);
}
}
void postWaitForIdle(final Retryable retryable, final int failedAttempts) {
mainHandler.post(new Runnable() {
public void run() {
waitForIdle(retryable, failedAttempts);
}
});
}
void waitForIdle(final Retryable retryable, final int failedAttempts) {
// This needs to be called from the main thread.
Looper.myQueue().addIdleHandler(new MessageQueue.IdleHandler() {
public boolean queueIdle() {
postToBackgroundWithDelay(retryable, failedAttempts);
return false;
}
});
}
在具体的 execute()
过程中,不管是 waitForIdle
还是 postWaitForIdle
,最终还是要切换到主线程中执行。要注意的是,这里的 IdleHandler
到底是什么时候去执行?
我们都知道 Handler
是循环处理 MessageQueue
中的消息的,当消息队列中没有更多消息需要处理的时候,且声明了 IdleHandler
接口,这是就会去处理这里的操作。即指定一些操作,当线程空闲的时候来处理。当主线程空闲时,就会通知后台线程延时 5 秒执行内存泄漏检测工作。
void postToBackgroundWithDelay(final Retryable retryable, final int failedAttempts) {
long exponentialBackoffFactor = (long) Math.min(Math.pow(2, failedAttempts), maxBackoffFactor);
long delayMillis = initialDelayMillis * exponentialBackoffFactor;
backgroundHandler.postDelayed(new Runnable() {
public void run() {
Retryable.Result result = retryable.run();
if (result == RETRY) {
postWaitForIdle(retryable, failedAttempts + 1);
}
}
}, delayMillis);
}
下面是真正的检测过程,AndroidWatchExecutor
在执行时调用 ensureGone()
方法:
RefWatcher.ensureGone
Retryable.Result ensureGone(final KeyedWeakReference reference, final long watchStartNanoTime) {
long gcStartNanoTime = System.nanoTime();
long watchDurationMs = NANOSECONDS.toMillis(gcStartNanoTime - watchStartNanoTime);
removeWeaklyReachableReferences();
if (debuggerControl.isDebuggerAttached()) {
// The debugger can create false leaks.
return RETRY;
}
if (gone(reference)) {
return DONE;
}
gcTrigger.runGc();
removeWeaklyReachableReferences();
if (!gone(reference)) {
long startDumpHeap = System.nanoTime();
long gcDurationMs = NANOSECONDS.toMillis(startDumpHeap - gcStartNanoTime);
File heapDumpFile = heapDumper.dumpHeap();
if (heapDumpFile == RETRY_LATER) {
// Could not dump the heap.
return RETRY;
}
long heapDumpDurationMs = NANOSECONDS.toMillis(System.nanoTime() - startDumpHeap);
heapdumpListener.analyze(
new HeapDump(heapDumpFile, reference.key, reference.name, excludedRefs, watchDurationMs,
gcDurationMs, heapDumpDurationMs));
}
return DONE;
}
再重复一次几个变量的含义,retainedKeys
是一个 Set
集合,存储检测对象对应的唯一 key
值,queue
是一个引用队列,存储被垃圾回收的对象。
主要过程有一下几步:
private void removeWeaklyReachableReferences() {
// WeakReferences are enqueued as soon as the object to which they point to becomes weakly
// reachable. This is before finalization or garbage collection has actually happened.
KeyedWeakReference ref;
while ((ref = (KeyedWeakReference) queue.poll()) != null) {
retainedKeys.remove(ref.key);
}
}
遍历引用队列 queue
,判断队列中是否存在当前 Activity
的弱引用,存在则删除 retainedKeys
中对应的引用的 key
值。
private boolean gone(KeyedWeakReference reference) {
return !retainedKeys.contains(reference.key);
}
判断 retainedKeys
中是否包含当前 Activity
引用的 key
值。
如果不包含,说明上一步操作中 retainedKeys
移除了该引用的 key
值,也就说上一步操作之前引用队列 queue
中包含该引用,GC
处理了该引用,未发生内存泄漏,返回 DONE
,不再往下执行。
如果包含,并不会立即判定发生内存泄漏,可能存在某个对象已经不可达,但是尚未进入引用队列 queue
。这时会主动执行一次 GC
操作之后再次进行判断。
/**
* Called when a watched reference is expected to be weakly reachable, but hasn't been enqueued
* in the reference queue yet. This gives the application a hook to run the GC before the {@link
* RefWatcher} checks the reference queue again, to avoid taking a heap dump if possible.
*/
public interface GcTrigger {
GcTrigger DEFAULT = new GcTrigger() {
public void runGc() {
// Code taken from AOSP FinalizationTest:
// https://android.googlesource.com/platform/libcore/+/master/support/src/test/java/libcore/
// java/lang/ref/FinalizationTester.java
// System.gc() does not garbage collect every time. Runtime.gc() is
// more likely to perfom a gc.
Runtime.getRuntime().gc();
enqueueReferences();
System.runFinalization();
}
private void enqueueReferences() {
// Hack. We don't have a programmatic way to wait for the reference queue daemon to move
// references to the appropriate queues.
try {
Thread.sleep(100);
} catch (InterruptedException e) {
throw new AssertionError();
}
}
};
void runGc();
}
注意这里调用 GC
的写法,并不是使用 System.gc
。System.gc
仅仅只是通知系统在合适的时间进行一次垃圾回收操作,实际上并不能保证一定执行。
主动进行 GC
之后会再次进行判定,过程同上。首先调用 removeWeaklyReachableReferences()
清除 retainedKeys
中弱引用的 key
值,再判断是否移除。如果仍然没有移除,判定为内存泄漏。
AndroidHeapDumper.dumpHeap
判定内存泄漏之后,调用 heapDumper.dumpHeap()
进行处理:
AndroidHeapDumper.java
"ReferenceEquality") // Explicitly checking for named null.
public File dumpHeap() {
File heapDumpFile = leakDirectoryProvider.newHeapDumpFile();
if (heapDumpFile == RETRY_LATER) {
return RETRY_LATER;
}
FutureResult
showToast(waitingForToast);
if (!waitingForToast.wait(5, SECONDS)) {
CanaryLog.d("Did not dump heap, too much time waiting for Toast.");
return RETRY_LATER;
}
Toast toast = waitingForToast.get();
try {
Debug.dumpHprofData(heapDumpFile.getAbsolutePath());
cancelToast(toast);
return heapDumpFile;
} catch (Exception e) {
CanaryLog.d(e, "Could not dump heap");
// Abort heap dump
return RETRY_LATER;
}
}
leakDirectoryProvider.newHeapDumpFile()
新建了 hprof
文件,然后调用 Debug.dumpHprofData()
方法 dump
当前堆内存并写入刚才创建的文件。
回到 RefWatcher.ensureGone()
方法中,生成 heapDumpFile
文件之后,通过 heapdumpListener
分析。
heapdumpListener.analyze(
new HeapDump(heapDumpFile, reference.key, reference.name, excludedRefs, watchDurationMs,
gcDurationMs, heapDumpDurationMs));
这里的 heapdumpListener
是 ServiceHeapDumpListener
对象,接着进入 ServiceHeapDumpListener.runAnalysis()
方法。
public void analyze(HeapDump heapDump) {
checkNotNull(heapDump, "heapDump");
HeapAnalyzerService.runAnalysis(context, heapDump, listenerServiceClass);
}
这里的 listenerServiceClass
指的是 DisplayLeakService.class
,文章开头提到的 AndroidRefWatcherBuilder
中进行了配置。
protected HeapDump.Listener defaultHeapDumpListener() {
return new ServiceHeapDumpListener(context, DisplayLeakService.class);
}
HeapAnalyzerService.runAnalysisHeapAnalyzerService.runAnalysis()
方法中启动了它自己,传递了两个参数,DisplayLeakService
类名和要分析的 heapDump
。启动自己后,在 onHandleIntent
中进行处理。
/**
* This service runs in a separate process to avoid slowing down the app process or making it run
* out of memory.
*/
public final class HeapAnalyzerService extends IntentService {
private static final String LISTENER_CLASS_EXTRA = "listener_class_extra";
private static final String HEAPDUMP_EXTRA = "heapdump_extra";
public static void runAnalysis(Context context, HeapDump heapDump,
Class extends AbstractAnalysisResultService> listenerServiceClass) {
Intent intent = new Intent(context, HeapAnalyzerService.class);
intent.putExtra(LISTENER_CLASS_EXTRA, listenerServiceClass.getName());
intent.putExtra(HEAPDUMP_EXTRA, heapDump);
context.startService(intent);
}
public HeapAnalyzerService() {
super(HeapAnalyzerService.class.getSimpleName());
}
protected void onHandleIntent(Intent intent) {
if (intent == null) {
CanaryLog.d("HeapAnalyzerService received a null intent, ignoring.");
return;
}
String listenerClassName = intent.getStringExtra(LISTENER_CLASS_EXTRA);
HeapDump heapDump = (HeapDump) intent.getSerializableExtra(HEAPDUMP_EXTRA);
HeapAnalyzer heapAnalyzer = new HeapAnalyzer(heapDump.excludedRefs);
AnalysisResult result = heapAnalyzer.checkForLeak(heapDump.heapDumpFile, heapDump.referenceKey);
AbstractAnalysisResultService.sendResultToListener(this, listenerClassName, heapDump, result);
}
}
checkForLeak
方法中主要使用了 Square
公司的另一个库 haha 来分析 Android heap dump
,得到结果后回调给 DisplayLeakService
。
public static void sendResultToListener(Context context, String listenerServiceClassName,
HeapDump heapDump, AnalysisResult result) {
Class> listenerServiceClass;
try {
listenerServiceClass = Class.forName(listenerServiceClassName);
} catch (ClassNotFoundException e) {
throw new RuntimeException(e);
}
Intent intent = new Intent(context, listenerServiceClass);
intent.putExtra(HEAP_DUMP_EXTRA, heapDump);
intent.putExtra(RESULT_EXTRA, result);
context.startService(intent);
}
同样在 onHandleIntent
中进行处理。
protected final void onHandleIntent(Intent intent) {
HeapDump heapDump = (HeapDump) intent.getSerializableExtra(HEAP_DUMP_EXTRA);
AnalysisResult result = (AnalysisResult) intent.getSerializableExtra(RESULT_EXTRA);
try {
onHeapAnalyzed(heapDump, result);
} finally {
//noinspection ResultOfMethodCallIgnored
heapDump.heapDumpFile.delete();
}
}
调用 onHeapAnalyzed()
之后,会将 hprof
文件删除。
DisplayLeakService.java
protected final void onHeapAnalyzed(HeapDump heapDump, AnalysisResult result) {
String leakInfo = leakInfo(this, heapDump, result, true);
CanaryLog.d("%s", leakInfo);
boolean resultSaved = false;
boolean shouldSaveResult = result.leakFound || result.failure != null;
if (shouldSaveResult) {
heapDump = renameHeapdump(heapDump);
resultSaved = saveResult(heapDump, result);
}
PendingIntent pendingIntent;
String contentTitle;
String contentText;
if (!shouldSaveResult) {
contentTitle = getString(R.string.leak_canary_no_leak_title);
contentText = getString(R.string.leak_canary_no_leak_text);
pendingIntent = null;
} else if (resultSaved) {
pendingIntent = DisplayLeakActivity.createPendingIntent(this, heapDump.referenceKey);
if (result.failure == null) {
String size = formatShortFileSize(this, result.retainedHeapSize);
String className = classSimpleName(result.className);
if (result.excludedLeak) {
contentTitle = getString(R.string.leak_canary_leak_excluded, className, size);
} else {
contentTitle = getString(R.string.leak_canary_class_has_leaked, className, size);
}
} else {
contentTitle = getString(R.string.leak_canary_analysis_failed);
}
contentText = getString(R.string.leak_canary_notification_message);
} else {
contentTitle = getString(R.string.leak_canary_could_not_save_title);
contentText = getString(R.string.leak_canary_could_not_save_text);
pendingIntent = null;
}
// New notification id every second.
int notificationId = (int) (SystemClock.uptimeMillis() / 1000);
showNotification(this, contentTitle, contentText, pendingIntent, notificationId);
afterDefaultHandling(heapDump, result, leakInfo);
}
根据分析结果,调用 showNotification()
方法构建了一个 Notification
向开发者通知内存泄漏。
public static void showNotification(Context context, CharSequence contentTitle,
CharSequence contentText, PendingIntent pendingIntent, int notificationId) {
NotificationManager notificationManager =
(NotificationManager) context.getSystemService(Context.NOTIFICATION_SERVICE);
Notification notification;
Notification.Builder builder = new Notification.Builder(context) //
.setSmallIcon(R.drawable.leak_canary_notification)
.setWhen(System.currentTimeMillis())
.setContentTitle(contentTitle)
.setContentText(contentText)
.setAutoCancel(true)
.setContentIntent(pendingIntent);
if (SDK_INT >= O) {
String channelName = context.getString(R.string.leak_canary_notification_channel);
setupNotificationChannel(channelName, notificationManager, builder);
}
if (SDK_INT < JELLY_BEAN) {
notification = builder.getNotification();
} else {
notification = builder.build();
}
notificationManager.notify(notificationId, notification);
}
最后还会执行一个空实现的方法 afterDefaultHandling
:
/**
* You can override this method and do a blocking call to a server to upload the leak trace and
* the heap dump. Don't forget to check {@link AnalysisResult#leakFound} and {@link
* AnalysisResult#excludedLeak} first.
*/
protected void afterDefaultHandling(HeapDump heapDump, AnalysisResult result, String leakInfo) {
}
你可以重写这个方法进行一些自定义的操作,比如向服务器上传泄漏的堆栈信息等。
这样,LeakCanary
就完成了整个内存泄漏检测的过程。可以看到,LeakCanary
的设计思路十分巧妙,同时也很清晰,有很多有意思的知识点,像对于弱引用和 ReferenceQueue
的使用, IdleHandler
的使用,四大组件的开启和关闭等等,都很值的大家去深究。
原创投稿:孙路遥
原文链接:https://www.jianshu.com/p/751f99918711