流体动量控制方程【Motion Equation】

流体动量控制方程

The Equation of Motion in terms of τ τ

控制方程通式:

ρDvvDt=pττ+ρgg ρ D v v D t = − ∇ p − ∇ ⋅ τ τ + ρ g g


1.直角坐标系( x,y,z x , y , z )

直角坐标系Cartesian coordinates (  x,y,z   x,y,z  ): NO.
ρ(vxt+vxvxx+vyvxy+vzvxz)=px[xτxx+yτyx+zτzx]+ρgx ρ ( ∂ v x ∂ t + v x ∂ v x ∂ x + v y ∂ v x ∂ y + v z ∂ v x ∂ z ) = − ∂ p ∂ x − [ ∂ ∂ x τ x x + ∂ ∂ y τ y x + ∂ ∂ z τ z x ] + ρ g x 1-1
ρ(vyt+vxvyx+vyvyy+vzvyz)=py[xτxy+yτyy+zτzy]+ρgy ρ ( ∂ v y ∂ t + v x ∂ v y ∂ x + v y ∂ v y ∂ y + v z ∂ v y ∂ z ) = − ∂ p ∂ y − [ ∂ ∂ x τ x y + ∂ ∂ y τ y y + ∂ ∂ z τ z y ] + ρ g y 1-2
ρ(vzt+vxvzx+vyvzy+vzvzz)=pz[xτxz+yτyz+zτzz]+ρgz ρ ( ∂ v z ∂ t + v x ∂ v z ∂ x + v y ∂ v z ∂ y + v z ∂ v z ∂ z ) = − ∂ p ∂ z − [ ∂ ∂ x τ x z + ∂ ∂ y τ y z + ∂ ∂ z τ z z ] + ρ g z 1-3

2.圆柱坐标系( r,θ,z r , θ , z )

圆柱坐标系Cylindrical coordinates coordinates ( r, θ, z  r,  θ , z  ): NO.
ρ(vrt+vrvrr+vθrvrθ+vzvrzv2θr)=pr[1rr(rτrr)+1rθτθr+zτzrτθθr]+ρgr ρ ( ∂ v r ∂ t + v r ∂ v r ∂ r + v θ r ∂ v r ∂ θ + v z ∂ v r ∂ z − v θ 2 r ) = − ∂ p ∂ r − [ 1 r ∂ ∂ r ( r τ r r ) + 1 r ∂ ∂ θ τ θ r + ∂ ∂ z τ z r − τ θ θ r ] + ρ g r 2-1
ρ(vθt+vrvθr+vθrvθθ+vzvθz+vrvθr)=1rpθ[1r2r(r2τrθ)+1rθτθθ+zτzθ+τθrτrθr]+ρgθ ρ ( ∂ v θ ∂ t + v r ∂ v θ ∂ r + v θ r ∂ v θ ∂ θ + v z ∂ v θ ∂ z + v r v θ r ) = − 1 r ∂ p ∂ θ − [ 1 r 2 ∂ ∂ r ( r 2 τ r θ ) + 1 r ∂ ∂ θ τ θ θ + ∂ ∂ z τ z θ + τ θ r − τ r θ r ] + ρ g θ 2-2
ρ(vzt+vrvzr+vθrvzθ+vzvzz)=pz[1rr(rτzz)+1rθτθz+zτzz]+ρgz ρ ( ∂ v z ∂ t + v r ∂ v z ∂ r + v θ r ∂ v z ∂ θ + v z ∂ v z ∂ z ) = − ∂ p ∂ z − [ 1 r ∂ ∂ r ( r τ z z ) + 1 r ∂ ∂ θ τ θ z + ∂ ∂ z τ z z ] + ρ g z 2-3

3.球坐标系( r,θ,ϕ r , θ , ϕ )

球坐标系Spherical coordinates( r, θϕ  r,  θ ,  ϕ   ): NO.
ρ(vrt+vrvrr+vθrvrθ+vϕrsinθvrϕv2θ+v2ϕr)=pr[1r2r(r2τrr)+1rsinθθ(τθrsinθ)+1rsinθϕτϕrτθθ+τϕϕr]+ρgr ρ ( ∂ v r ∂ t + v r ∂ v r ∂ r + v θ r ∂ v r ∂ θ + v ϕ r s i n θ ∂ v r ∂ ϕ − v θ 2 + v ϕ 2 r ) = − ∂ p ∂ r − [ 1 r 2 ∂ ∂ r ( r 2 τ r r ) + 1 r s i n θ ∂ ∂ θ ( τ θ r s i n θ ) + 1 r s i n θ ∂ ∂ ϕ τ ϕ r − τ θ θ + τ ϕ ϕ r ] + ρ g r 3-1
ρ(vθt+vrvθr+vθrvθθ+vϕrsinθvθϕ+vrvθv2ϕcotθr)=1rpθ[1r3r(r3τrθ)+1rsinθθ(τθθsinθ)+1rsinθϕτϕθ+(τθrτrθ)τϕϕcotθr]+ρgθ ρ ( ∂ v θ ∂ t + v r ∂ v θ ∂ r + v θ r ∂ v θ ∂ θ + v ϕ r s i n θ ∂ v θ ∂ ϕ + v r v θ − v ϕ 2 c o t θ r ) = − 1 r ∂ p ∂ θ − [ 1 r 3 ∂ ∂ r ( r 3 τ r θ ) + 1 r s i n θ ∂ ∂ θ ( τ θ θ s i n θ ) + 1 r s i n θ ∂ ∂ ϕ τ ϕ θ + ( τ θ r − τ r θ ) − τ ϕ ϕ c o t θ r ] + ρ g θ 3-2
ρ(vϕt+vrvϕr+vθrvϕθ+vϕrsinθvϕϕ+vϕvr+vθvϕcotθr)=1rsinθpϕ[1r3r(r3τrϕ)+1rsinθθ(τθϕsinθ)+1rsinθϕτϕϕ+(τϕrτrϕ)+τϕθcotθr]+ρgϕ ρ ( ∂ v ϕ ∂ t + v r ∂ v ϕ ∂ r + v θ r ∂ v ϕ ∂ θ + v ϕ r s i n θ ∂ v ϕ ∂ ϕ + v ϕ v r + v θ v ϕ c o t θ r ) = − 1 r s i n θ ∂ p ∂ ϕ − [ 1 r 3 ∂ ∂ r ( r 3 τ r ϕ ) + 1 r s i n θ ∂ ∂ θ ( τ θ ϕ s i n θ ) + 1 r s i n θ ∂ ∂ ϕ τ ϕ ϕ + ( τ ϕ r − τ r ϕ ) + τ ϕ θ c o t θ r ] + ρ g ϕ 3-3

注:如果 ττ τ τ 具有对称性,那么 τrθτθr=0 τ r θ − τ θ r = 0


参考文献

  1. R. Byron Bird, Warren E. stewart, Edwin N. Lightfoot.* Transport phenomena:Revised second edition* John Wiely &Sons, Inc.

你可能感兴趣的:(流体力学【Fluid,Mechanics】)