Elasticsearch aggregation order by scripted_metric

ES 使用order by script_metric 会有问题,官方文档中有order by 只能针对numbric,不能对pipeline,scripted_mertic排序

如下

1 无排序使用scripted_metric

POST biz_weibo_real_word_tblog_*/_search
{
  "size" : 1,
  "query" : {
    "bool" : {
      "must" : [
        {
          "term" : {
            "word" : {
              "value" : "范冰冰",
              "boost" : 1.0
            }
          }
        }
      ],
      "disable_coord" : false,
      "adjust_pure_negative" : true,
      "boost" : 1.0
    }
  },
  "version" : false,
  "aggregations" : {
    "agg_nested_rela_word0" : {
      "nested" : {
        "path" : "rela_word"
      },
      "aggregations" : {
        "agg_b_terms_rela_word_word" : {
          "terms" : {
            "field" : "rela_word.word",
            "size" : 20,
            "min_doc_count" : 1,
            "shard_min_doc_count" : 0,
            "show_term_doc_count_error" : false
           
          },
          "aggregations" : {
            "hot_value_" : {
              "scripted_metric": {
                "init_script": "params._agg.hv = 0.0;",
                "map_script": "double factor=((params.now-doc['dt'].value)/params.day +1) ; params._agg.hv=(factor*doc['rela_word.hot_value'].value);",
                "reduce_script": "double thv = 0; for (a in params._aggs) { thv += a.hv } return thv/params._aggs.size();",
                "params": {
                   "field": "rela_word.hot_value,dt", 
                    "_agg": {} ,
                    "now": 1531324800000,
                    "day": 3600000

                }
              }
            }
          }
        }
      }
    }
  }
}

2有排序报错

POST biz_weibo_real_word_tblog_*/_search
{
  "size" : 1,
  "query" : {
    "bool" : {
      "must" : [
        {
          "term" : {
            "word" : {
              "value" : "范冰冰",
              "boost" : 1.0
            }
          }
        },
        {
          "term" : {
            "dt" : {
              "value" : "2018-07-12 00:00:00",
              "boost" : 1.0
            }
          }
        }
      ],
      "disable_coord" : false,
      "adjust_pure_negative" : true,
      "boost" : 1.0
    }
  },
  "version" : false,
  "aggregations" : {
    "agg_nested_rela_word0" : {
      "nested" : {
        "path" : "rela_word"
      },
      "aggregations" : {
        "agg_b_terms_rela_word_word" : {
          "terms" : {
            "field" : "rela_word.word",
            "size" : 20,
            "min_doc_count" : 1,
            "shard_min_doc_count" : 0,
            "show_term_doc_count_error" : false,
            "order": {
              "hot_value_": "desc"
            }
          },
          "aggregations" : {
            "hot_value_" : {
              "scripted_metric": {
                "init_script": "params._agg.hv = 0.0;",
                "map_script": "double factor= 0.0; if((params.now-doc['dt'].value)==0){factor=params.v_d;}else{ factor=params.v_d_; } params._agg.hv=(factor*doc['rela_word.hot_value'].value);",
                "reduce_script": "double thv = 0; for (a in params._aggs) { thv += a.hv } return thv/params._aggs.size();",
                "params": {
                   "field": "rela_word.hot_value,dt", 
                    "_agg": {} ,
                    "now": 1531324800000,
                    "day": 3600000,
                    "v_d":0.8,
                    "v_d_":0.05

                }
              }
            }
          }
        }
      }
    }
  }
}

3 间接解决办法

POST biz_weibo_real_word_tblog_*/_search
{
  "size" : 1,
  "query" : {
    "bool" : {
      "must" : [
        {
          "term" : {
            "word" : {
              "value" : "范冰冰",
              "boost" : 1.0
            }
          }
        },
        {
          "term" : {
            "dt" : {
              "value" : "2018-07-12 00:00:00",
              "boost" : 1.0
            }
          }
        }
      ],
      "disable_coord" : false,
      "adjust_pure_negative" : true,
      "boost" : 1.0
    }
  },
  "version" : false,
  "aggregations" : {
    "agg_nested_rela_word0" : {
      "nested" : {
        "path" : "rela_word"
      },
      "aggregations" : {
        "agg_b_terms_rela_word_word" : {
          "terms" : {
            "field" : "rela_word.word",
            "size" : 20,
            "min_doc_count" : 1,
            "shard_min_doc_count" : 0,
            "show_term_doc_count_error" : false,
            "order": {
              "hot_value_": "desc"
            }
          },
          "aggregations" : {
            "hot_value_" : {
              "sum": {
                "script": "double factor= 0.0; long today=1531324800000L; if(doc['dt'].value==today){factor=0.8;}else{ factor=0.05; } return factor*doc['rela_word.hot_value'].value;"
                
              }
            }
          }
        }
      }
    }
  }
}

你可能感兴趣的:(scripted_metric,order,by,Elasticsearch)