jieba(结巴)是一个强大的分词库,完美支持中文分词,本文对其基本用法做一个简要总结。
特点
- 支持三种分词模式:
- 精确模式,试图将句子最精确地切开,适合文本分析;
- 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
- 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。
- 支持繁体分词
- 支持自定义词典
- MIT 授权协议
安装jieba
pip install jieba
简单用法
结巴分词分为三种模式:精确模式(默认)、全模式和搜索引擎模式,下面对这三种模式分别举例介绍:
精确模式
import jieba s = u'我想和女朋友一起去北京故宫博物院参观和闲逛。'
cut = jieba.cut(s) print '【Output】' print cut print ','.join(cut)
【Output】我,想,和,女朋友,一起,去,北京故宫博物院,参观,和,闲逛,。
可见分词结果返回的是一个生成器(这对大数据量数据的分词尤为重要)。
全模式
print '【Output】' print ','.join(jieba.cut(s,cut_all = True))
【Output】 我,想,和,女朋友,朋友,一起,去,北京,北京故宫,北京故宫博物院,故宫,故宫博物院,博物,博物院,参观,和,闲逛,,
可见全模式就是把文本分成尽可能多的词。
搜索引擎模式
print '【Output】' print ','.join(jieba.cut_for_search(s))
【Output】 我,想,和,朋友,女朋友,一起,去,北京,故宫,博物,博物院,北京故宫博物院,参观,和,闲逛,。
获取词性
每个词都有其词性,比如名词、动词、代词等,结巴分词的结果也可以带上每个词的词性,要用到jieba.posseg,举例如下:
import jieba.posseg as psg print '【Output】' print [(x.word,x.flag) for x in psg.cut(s)] # 输出: ''' [(u'我', u'r'), (u'想', u'v'), (u'和', u'c'), (u'女朋友', u'n'), (u'一起', u'm'), (u'去', u'v'), (u'北京故宫博物院', u'ns'), (u'参观', u'n'), (u'和', u'c'), (u'闲逛', u'v'), (u'。', u'x')] '''
可以看到成功获取到每个词的词性,这对于我们对分词结果做进一步处理很有帮助,比如只想获取分词结果列表中的名词,那么就可以这样过滤:
print [(x.word,x.flag) for x in psg.cut(s) if x.flag.startswith('n')] # 输出: ''' [(u'女朋友', u'n'), (u'北京故宫博物院', u'ns'), (u'参观', u'n')] '''
至于词性的每个字母分别表示什么词性,jieba分词的结果可能有哪些词性,就要去查阅词性对照表了,本文结尾附了一份从网上搜到的词性对照表,想了解更详细的词性分类信息,可以到网上搜索"结巴分词词性对照"。
并行分词
在文本数据量非常大的时候,为了提高分词效率,开启并行分词就很有必要了。jieba支持并行分词,基于python自带的multiprocessing模块,但要注意的是在Windows环境下不支持。
用法:
# 开启并行分词模式,参数为并发执行的进程数 jieba.enable_parallel(5) # 关闭并行分词模式 jieba.disable_parallel()
举例:开启并行分词模式对三体全集文本进行分词
santi_text = open('./santi.txt').read() print len(santi_text)
2681968
可以看到三体全集的数据量还是非常大的,有260多万字节的长度。
jieba.enable_parallel(100) santi_words = [x for x in jieba.cut(santi_text) if len(x) >= 2] jieba.disable_parallel()
获取出现频率Top n的词
还是以上面的三体全集文本为例,假如想要获取分词结果中出现频率前20的词列表,可以这样获取:
from collections import Counter c = Counter(santi_words).most_common(20) print c # 输出: ''' [(u'\r\n', 21805), (u'一个', 3057), (u'没有', 2128), (u'他们', 1690), (u'我们', 1550), (u'这个', 1357), (u'自己', 1347), (u'程心', 1320), (u'现在', 1273), (u'已经', 1259), (u'世界', 1243), (u'罗辑', 1189), (u'可能', 1177), (u'什么', 1176), (u'看到', 1114), (u'知道', 1094), (u'地球', 951), (u'人类', 935), (u'太空', 930), (u'三体', 883)] '''
可以看到结果中'\r\n'居然是出现频率最高的词,还有'一个'、'没有'、'这个'等这种我们并不想要的无实际意义的词,那么就可以根据前面说的词性来进行过滤,这个以后细讲。
使用用户字典提高分词准确性
不使用用户字典的分词结果:
txt = u'欧阳建国是创新办主任也是欢聚时代公司云计算方面的专家' print ','.join(jieba.cut(txt))
欧阳,建国,是,创新,办,主任,也,是,欢聚,时代,公司,云,计算,方面,的,专家
使用用户字典的分词结果:
jieba.load_userdict('user_dict.txt') print ','.join(jieba.cut(txt))
欧阳建国,是,创新办,主任,也,是,欢聚时代,公司,云计算,方面,的,专家
可以看出使用用户字典后分词准确性大大提高。
注:其中user_dict.txt的内容如下:
欧阳建国 5
创新办 5 i
欢聚时代 5
云计算 5
用户字典每行一个词,格式为:
词语 词频 词性
其中词频是一个数字,词性为自定义的词性,要注意的是词频数字和空格都要是半角的。
附:结巴分词词性对照表(按词性英文首字母排序)
形容词(1个一类,4个二类)
a 形容词
ad 副形词
an 名形词
ag 形容词性语素
al 形容词性惯用语
区别词(1个一类,2个二类)
b 区别词
bl 区别词性惯用语
连词(1个一类,1个二类)
c 连词
cc 并列连词
副词(1个一类)
d 副词
叹词(1个一类)
e 叹词
方位词(1个一类)
f 方位词
前缀(1个一类)
h 前缀
后缀(1个一类)
k 后缀
数词(1个一类,1个二类)
m 数词
mq 数量词
名词 (1个一类,7个二类,5个三类)
名词分为以下子类:
n 名词
nr 人名
nr1 汉语姓氏
nr2 汉语名字
nrj 日语人名
nrf 音译人名
ns 地名
nsf 音译地名
nt 机构团体名
nz 其它专名
nl 名词性惯用语
ng 名词性语素
拟声词(1个一类)
o 拟声词
介词(1个一类,2个二类)
p 介词
pba 介词“把”
pbei 介词“被”
量词(1个一类,2个二类)
q 量词
qv 动量词
qt 时量词
代词(1个一类,4个二类,6个三类)
r 代词
rr 人称代词
rz 指示代词
rzt 时间指示代词
rzs 处所指示代词
rzv 谓词性指示代词
ry 疑问代词
ryt 时间疑问代词
rys 处所疑问代词
ryv 谓词性疑问代词
rg 代词性语素
处所词(1个一类)
s 处所词
时间词(1个一类,1个二类)
t 时间词
tg 时间词性语素
助词(1个一类,15个二类)
u 助词
uzhe 着
ule 了 喽
uguo 过
ude1 的 底
ude2 地
ude3 得
usuo 所
udeng 等 等等 云云
uyy 一样 一般 似的 般
udh 的话
uls 来讲 来说 而言 说来
uzhi 之
ulian 连 (“连小学生都会”)
动词(1个一类,9个二类)
v 动词
vd 副动词
vn 名动词
vshi 动词“是”
vyou 动词“有”
vf 趋向动词
vx 形式动词
vi 不及物动词(内动词)
vl 动词性惯用语
vg 动词性语素
标点符号(1个一类,16个二类)
w 标点符号
wkz 左括号,全角:( 〔 [ { 《 【 〖 〈 半角:( [ { <
wky 右括号,全角:) 〕 ] } 》 】 〗 〉 半角: ) ] { >
wyz 左引号,全角:“ ‘ 『
wyy 右引号,全角:” ' 』
wj 句号,全角:。
ww 问号,全角:? 半角:?
wt 叹号,全角:! 半角:!
wd 逗号,全角:, 半角:,
wf 分号,全角:; 半角: ;
wn 顿号,全角:、
wm 冒号,全角:: 半角: :
ws 省略号,全角:…… …
wp 破折号,全角:―― -- ――- 半角:--- ----
wb 百分号千分号,全角:% ‰ 半角:%
wh 单位符号,全角:¥ $ £ ° ℃ 半角:$
字符串(1个一类,2个二类)
x 字符串
xx 非语素字
xu 网址URL
语气词(1个一类)
y 语气词(delete yg)
状态词(1个一类)
z 状态词
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。