最近在优化hiveSQL,
下面是一段排序,分组后取每组第一行记录的SQL
- INSERT OVERWRITE TABLE t_wa_funnel_distinct_temp PARTITION (pt='${SRCTIME}')
- SELECT
- bussiness_id,
- cookie_id,
- session_id,
- funnel_id,
- group_first(funnel_name) funnel_name,
- step_id,
- group_first(step_name) step_name,
- group_first(log_type) log_type,
- group_first(url_pattern) url_pattern,
- group_first(url) url,
- group_first(refer) refer,
- group_first(log_time) log_time,
- group_first(is_new_visitor) is_new_visitor,
- group_first(is_mobile_traffic) is_mobile_traffic,
- group_first(is_bounce) is_bounce,
- group_first(campaign_name) campaign_name,
- group_first(group_name) group_name,
- group_first(slot_name) slot_name,
- group_first(source_type) source_type,
- group_first(next_page) next_page,
- group_first(continent) continent,
- group_first(sub_continent_region) sub_continent_region,
- group_first(country) country,
- group_first(region) region,
- group_first(city) city,
- group_first(language) language,
- group_first(browser) browser,
- group_first(os) os,
- group_first(screen_color) screen_color,
- group_first(screen_resolution) screen_resolution,
- group_first(flash_version) flash_version,
- group_first(java) java,
- group_first(host) host
- FROM
- ( SELECT *
- FROM r_wa_funnel
- WHERE pt='${SRCTIME}'
- ORDER BY bussiness_id, cookie_id, session_id, funnel_id, step_id, log_time ASC
- ) t1
- GROUP BY pt, bussiness_id, cookie_id, session_id, funnel_id, step_id;
group_first: 自定义函数, 用户取每组第一个字段
${SRCTIME}: 由外部oozie调度传入, 作为时间分区,精确到小时. eg: 2011.11.01.21
下面在hive上以SRCTIME = 2011.11.01.21 执行以上SQL. 2011.11.01.21 小时分区记录数有10435486
执行时间:
从上面可以看出,reduce阶段只有一个reduce, 这是因为ORDER BY是全局排序,hive只能通过一个reduce进行排序
从业务需求来看, 只要按bussiness_id, cookie_id, session_id, funnel_id, step_id分组,组内按
log_time升序排序即可.
OK, 这样可以采用hive提供的distribute by 和 sort by, 这样可以充分利用hadoop资源, 在多个
reduce中局部按log_time 排序
优化有的hive代码:
- INSERT OVERWRITE TABLE t_wa_funnel_distinct PARTITION (pt='2011.11.01.21')
- SELECT
- bussiness_id,
- cookie_id,
- session_id,
- funnel_id,
- group_first(funnel_name) funnel_name,
- step_id,
- group_first(step_name) step_name,
- group_first(log_type) log_type,
- group_first(url_pattern) url_pattern,
- group_first(url) url,
- group_first(refer) refer,
- group_first(log_time) log_time,
- group_first(is_new_visitor) is_new_visitor,
- group_first(is_mobile_traffic) is_mobile_traffic,
- group_first(is_bounce) is_bounce,
- group_first(campaign_name) campaign_name,
- group_first(group_name) group_name,
- group_first(slot_name) slot_name,
- group_first(source_type) source_type,
- group_first(next_page) next_page,
- group_first(continent) continent,
- group_first(sub_continent_region) sub_continent_region,
- group_first(country) country,
- group_first(region) region,
- group_first(city) city,
- group_first(language) language,
- group_first(browser) browser,
- group_first(os) os,
- group_first(screen_color) screen_color,
- group_first(screen_resolution) screen_resolution,
- group_first(flash_version) flash_version,
- group_first(java) java,
- group_first(host) host
- FROM
- ( SELECT *
- FROM r_wa_funnel
- WHERE pt='2011.11.01.21'
- distribute by bussiness_id, cookie_id, session_id, funnel_id, step_id sort by log_time ASC
- ) t1
- GROUP BY bussiness_id, cookie_id, session_id, funnel_id, step_id;
执行时间:
第一个需要执行6:43, 而优化有只要执行0:35秒, 性能得到大幅提升