大整数相关的几道题

1、大整数相加

   1: static void plus(String input1, String input2) {
   2:         char[] input11 = input1.toCharArray();
   3:         char[] input21 = input2.toCharArray();
   4:  
   5:         int len1 = input11.length, len2 = input21.length;
   6:  
   7:         int len = len1 > len2 ? len1 : len2;
   8:         int[] result = new int[len + 1]; // 结果数组
   9:  
  10:         int[] number1 = new int[len];
  11:         int[] number2 = new int[len];
  12:  
  13:         // 数据反转 因为下标的因素
  14:         for (int i = 0; i < len; i++) {
  15:             // input1长,input2补位0
  16:             if (len == len1) {
  17:                 number1[i] = input11[len - i - 1] - '0';
  18:                 if (i < len2) {
  19:                     number2[i] = input21[len2 - i - 1] - '0';
  20:                 } else
  21:                     number2[i] = 0;
  22:             } else {
  23:                 number2[i] = input21[len - i - 1] - '0';
  24:                 if (i < len1) {
  25:                     number1[i] = input11[len1 - i - 1] - '0';
  26:                 } else
  27:                     number1[i] = 0;
  28:             }
  29:         }
  30:  
  31:         //print(number1);
  32:         //print(number2);
  33:  
  34:         int count = 0;
  35:  
  36:         for (int i = 0; i < len; i++) {
  37:             result[i] += number1[i] + number2[i];
  38:             if (result[i] > 10) {
  39:                 result[i + 1] = result[i] / 10; // 进位
  40:                 result[i] = result[i] % 10;
  41:             }
  42:  
  43:         }
  44:  
  45:         if (result[len] != 0)
  46:             count = len;
  47:         else
  48:             count = len - 1;
  49:  
  50:         for (int i = count; i >= 0; i--) {
  51:             System.out.print(result[i]);
  52:         }
  53:         System.out.println();
  54:     }
  55:  
  56:     static void print(int[] number) {
  57:         for (int i = number.length - 1; i >= 0; i--) {
  58:             System.out.print(number[i]);
  59:         }
  60:         System.out.println();
  61:     }
  62:  
  63:     public static void main(String[] args) {
  64:         // TODO Auto-generated method stub
  65:  
  66:         System.out.println("测试数据");
  67:         String input11 = "1234332234456";
  68:         String input12 = "12352153262131236";
  69:  
  70:         String input21 = "120";
  71:         String input22 = "9";
  72:  
  73:         String input31 = "123";
  74:         String input32 = "18";
  75:  
  76:         plus(input11, input12);
  77:         plus(input21, input22);
  78:         plus(input31, input32);
  79:     }
  80:  
  81: }

2、大整数相乘

   1: static void multiply(String input1, String input2) {
   2:         char[] input11 = input1.toCharArray();
   3:         char[] input21 = input2.toCharArray();
   4:  
   5:         int len1 = input11.length, len2 = input21.length;
   6:  
   7:         int[] number1 = new int[len1];
   8:         int[] number2 = new int[len2];
   9:  
  10:         // 数据反转 因为下标的因素
  11:         for (int i = 0; i < len1; i++) {
  12:             number1[i] = input11[len1 - i - 1] - '0';
  13:         }
  14:  
  15:         for (int i = 0; i < len2; i++) {
  16:             number2[i] = input21[len2 - i - 1] - '0';
  17:         }
  18:  
  19:         //print(number1);
  20:         //print(number2);
  21:  
  22:         int[] result = new int[len1 + len2]; // 结果数组
  23:         int count = 0;
  24:  
  25:         for (int i = 0; i < len1; i++)
  26:             for (int j = 0; j < len2; j++) {
  27:                 result[i + j] += number1[i] * number2[j];
  28:                 if (result[i + j] > 10) {
  29:                     result[i + j + 1] = result[i + j] / 10; // 进位
  30:                     result[i + j] = result[i + j] % 10;
  31:                 }
  32:             }
  33:  
  34:         if (result[len2 + len1-1] != 0)
  35:             count = len2 + len1 - 1;
  36:         else
  37:             count = len2 + len1 - 2;
  38:  
  39:         for (int i = count;i>=0; i--) {
  40:             System.out.print(result[i]);
  41:         }
  42:         System.out.println();
  43:     }
  44:  
  45:     static void print(int[] number) {
  46:         for (int i = number.length-1;i>=0; i--) {
  47:             System.out.print(number[i]);
  48:         }
  49:         System.out.println();
  50:     }
  51:  
  52:     public static void main(String[] args) {
  53:         // TODO Auto-generated method stub
  54:         
  55:         int i = 1;
  56:         int j = i++;
  57:         System.out.println(i + " " + j);
  58:         // System.out.println(i > j++);
  59:         if ((i > j++) && (i++ == j))
  60:             i += j;
  61:         System.out.println(i + " " + j);
  62:         System.out.println((int) 'a');
  63:         System.out.println('0' + 1);
  64:         
  65:         System.out.println("测试数据");
  66:         String input11 = "1234332234456";
  67:         String input12 = "12352153262131236";
  68:  
  69:         String input21 = "120";
  70:         String input22 = "9";
  71:  
  72:         String input31 = "123";
  73:         String input32 = "2";
  74:  
  75:         String input41 = "100";
  76:         String input42 = "200";
  77:         
  78:         multiply(input11,input12);
  79:         multiply(input21, input22);
  80:         multiply(input31, input32);
  81:         multiply(input41, input42);
  82:     }

3、求一个整数n的阶乘,0 <= n <=5000。

比如n = 50,结果为30414093201713378043612608166064768844377641568960512000000000000。

......

4、一个是100!估算要多少个bit位来表示

解题思路:如果找数学公式的话就陷入了思维误区。比如说最简单的4!和5!来分析。

   先来分析:2^4=16<4!=24<2^5=32,即4!可以用5bit进行表示。11000。

同理:2^6=64<5!=120<2^7=128,即5!的阶乘可以用7bit表示。1111000

   可以通过分析知,这里最主要的是获取k!的范围空间,但阶乘的范围不好确定。由于估算求bit位,可以想到与2有关,所以这里联想到使用取对数,将阶乘中的乘法转换成简单的加法运算进行计算。

   经过转换,4!和5!情况如下。

1) 记M=lg4! = lg4+lg3+lg2。M的范围

M<lg4+lg4+lg2=5且M>lg4+lg2+lg2=4

      即4!用bit表示:位数在区间[4,5]之间。

2) 记N=lg4! = lg5+lg4+lg3+lg2。N的范围

N<lg8+lg4+lg4+lg2=8且N>lg4+lg4+lg2+lg2=6

      即5!用bit表示:位数在区间[6,8]之间。

根据取对数之后的计算,可以大致估计出阶乘后的范围。

所以,对于100!而言,T=lg100+lg99+..+lg64+..+lg32+..+lg16+..+lg8+..+lg4+..+lg2,通过上述类似的估计范围可得:

T>lg64+lg64+...+lg64+lg32+..+lg32+lg16+..+lg16+lg8+..+lg8+lg4+..+lg4+lg2+..+lg2 = 37*lg64+32*lg32+16*lg16+8*lg8+4*lg4+2*lg2+1*lg1 = 480

T<lg128+lg128+...+lg128+lg64+..+lg64+lg32+..+lg32+lg16+..+lg16+lg8+..+lg8+lg4+..+lg4+lg2  = 36*lg128+32*lg64+16lg32+8lg16+4lg8+2lg4+lg2= 573。

所以最后的范围就在480~573之间

5、找符合条件的整数(来源自编程之美)

任意给定一个正整数N,求一个最小的正整数M(M>1),使得M*N的十进制表示形式中只含有1和0。

   1: #include<iostream>
   2: using namespace std;
   3:  
   4: int find_M(int N) {
   5:   // 边界条件 
   6:   if(N == 1)
   7:     return 1;
   8:   // 初始化余数数组 
   9:   int *A = new int[N]; // 记录已有的余数,A[i]表示对N的余数为i的最小满足条件的数值
  10:   int *B = new int[N]; // 记录更新的余数
  11:   memset(A, -1, N*sizeof(int));
  12:   A[1] = 1;
  13:   // 寻找过程 
  14:   int factor = 10;
  15:   bool not_found = true;
  16:   while(not_found) {
  17:     memset(B, -1, N*sizeof(int));
  18:     int x = factor % N; // 高位数值对N的余数
  19:     // 高位数值 + 0 的情况 
  20:     if(A[x] == -1) {
  21:       B[x] = factor;
  22:       if(x == 0)
  23:         break;
  24:     }
  25:     // 高位数值 + 低位正整数的情况 
  26:     for(int i=1; i<N; i++) { // 遍历每个可能的余数
  27:       if(A[i] == -1)
  28:         continue;
  29:       int new_x = (x + i) % N; // 计算出的余数
  30:       if(A[new_x] == -1 && B[new_x] == -1) { // 如果是一个新的余数,保存
  31:         B[new_x] = factor + A[i]; 
  32:         if(new_x == 0) { // 刚好找到的新的余数是0 
  33:           not_found = false;
  34:           break;
  35:         }// if         
  36:       }// if      
  37:     }//for
  38:     factor *= 10;
  39:     for(int j=0; j<N; j++) {
  40:       if(A[j]==-1 && B[j]!=-1) {
  41:         A[j] = B[j];
  42:       }
  43:     }
  44:   }// while
  45:   int result = B[0];
  46:   delete[] A;
  47:   delete[] B;
  48:   return result;
  49: }
  50:  
  51: int main() {
  52:   int N;
  53:   while(true) {
  54:     cout << "N:";
  55:     cin >> N;
  56:     if(N < 1)
  57:       break;
  58:     cout << "M:" << find_M(N)/N << endl;
  59:     cout << "正整数为:" << find_M(N)/N*N << endl;
  60:   }
  61:   system("PAUSE");
  62:   return 0;
  63: }

扩展资料:

1、解题笔记(40)——第1-39篇合集

2、程序员面试题精选100题

你可能感兴趣的:(大整数相关的几道题)