微信端口及协议分析(java、C版)

有朋友公司需求如下,手机通过WIFI连接上网,而老板要求,员工使用手机只能上微信,而不能上其他网页和看在线视频。上网搜索了微信使用协议和端口。

微信通过TCP方式来进行通讯。
TCP通讯方式分析
通讯端口分析
远程通讯端口范围: 80,443,80,443,8080。
HTTP方式分析
在特征分析中,发现微信会采用HTTP协议进行通讯。
连接的主机(Host)(正则表达式)为:^short\.weixin\.qq\.com,^(mmsns|mmbiz)\.qpic\.cn。
TLS方式分析
在特征分析中,发现微信会采用TLS协议进行通讯。
连接的TLS主机(正则表达式)为:^(wx|weixin|res\.wx)\.qq\.com。
这个协议只是用来检测和屏蔽微信的,不能监控聊天记录内容。

来源:笨驴技术

安桌手机,可以用tcpdump进行抓包。。分析!!
初步分析结果:
使用80、8080,登陆和交互。
使用:tcp 14000  端口  SCOTTY High-Speed Filetransferscotty-ft   发送语音文件
TCP: 5222  5223  5228   80  8080   443

来源:http://bbs.51cto.com/thread-1031608-1.html

微信、手机QQ网络行为简析
测试环境:
智能手机一部(打开wifi关闭gprs) ―-> Linux wifi 热点 ―-> 公网
分析手段:
在linux 上用tcpdump抓包,用wireshark分析抓到的数据
在linux上用iptables阻断特定流量,模拟网络故障,分别模拟了拦截udp 53/tcp 80/tcp 8080/tcp 14000/tcp全拦截等各种情况以及他们的组合
通过 adb shell在手机内执行netstat了解手机网络链接情况
微信网络行为:
程序启动后,优先尝试DNS解析特定域名(support.weixin.qq.com,short.weixin.qq.com,long.weixin.qq.com,wx.qlogo.cn);
如果DNS查询不可用,程序转为使用hardcode的ip链接服务;
如果dns可用,返回的ip为根据ISP智能解析的结果,程序使用返回的ip链接服务;
程序仅在注册阶段使用https链接,内容不详;
程序使用tcp 80/8080链接服务器,其中80为http协议,8080为未知协议;
80/8080两个端口同时或任何单独一个,均可提供服务;
80端口为短链接,8080为长链接, 程序会优先使用8080端口;
没有使用udp传输数据;
当1-2次发送失败时,客户端会弹出提示“当前网络状况不好,是否提交反馈数据”,确认后客户端试图通过web提交反馈数据;
手机qq网络行为:
仅列出跟微信不同之处
尝试的域名不同: monitor.uu.qq.com,3gimg.qq.com, msfwifi.3g.qq.com, kiss.3g.qq.com;
除了80/8080外,还有tcp 14000,功能与8080相同;
程序会优先尝试80/8080,只有这两个不可用时,才尝试14000;
其余同微信;

来源:http://noops.me/?p=327

方案设想:只开放以上端口,其他上也是全部开放了,在上网出口处加上网行为管理设备或者软件进行控制,只允许以下正则的网址通行:

^short\.weixin\.qq\.com,^(mmsns|mmbiz)\.qpic\.cn
^(wx|weixin|res\.wx)\.qq\.com

以下是软件实现方式

微信端口及协议分析(java、C版)_第1张图片

微信协议小结

//www.jb51.net/article/96811.htm

发布的消息对应一个ID(只要单个方向唯一即可,服务器端可能会根ID判断重复接收),消息重传机制确保有限次的重试,重试失败给予用户提示,发送成功会反馈确认,客户端只有收到确认信息才知道发送成功。发送消息可能不会产生新SyncKey。
基于版本号(SynKey)的状态消息同步机制,增量、有序传输需求水到渠成。长连接通知/短连接获取、确认等,交互方式简单,确保了消息可靠谱、准确无误到达。

客户端/服务器端都会存储消息ID处理记录,避免被重复消费客户端获取最新消息,但未确认,服务器端不会认为该消息被消费掉。下次客户端会重新获取,会查询当前消息是否被处理过。根据一些现象猜测。
总体上看,微信协议跨平台(TCP或HTPP都可呈现,处理方式可统一),通过“握手”同步,很可靠,无论哪一个平台都可以支持的很好微信协议最小成本为16字节,大部分时间若干个消息包和在一起,批量传输。微信协议说不上最简洁,也不是最节省流量,但是非常成功的。

若服务器检测到一些不确定因素,可能会导致微启用安全套接层SSL协议进行常规的TCP长连接传输。短连接都没有发生变化

发送消息方式

发送消息走已经建立的TCP长连接通道,发送消息到服务器,然后接受确认信息等,产生一次交互。

小伙伴接收到信息阅读也都会收到服务器端通知,产生一次交互等。

可以确定,微信发送消息走TCP长连接方式,因为不对自身状态数据产生影响,应该不交换SyncKey。

在低速网络下,大概会看到消息发送中的提示,属于消息重发机制
网络不好有时客户端会出现发送失败的红色感叹号
已发送到服务器但未收到确认的消息,客户端显示红色感叹号,再次重发,服务器作为重复消息处理,反馈确认
上传图片,会根据图片大小,分割成若干部分(大概1.5K被划分为一部分),同一时间点,客户端会发起若干次POST请求,各自上传成功之后,服务器大概会合并成一个完整图片,返回一个缩略图,显示在APP聊天窗口内。APP作为常规的文字消息发送到服务器端上传音频,则单独走TCP通道,一个两秒的录制音频,客户端录制完毕,分为两块传输,一块最大1.5K左右,服务端响应一条数据通知确认收到。共三次数据传输。
音频和纯文字信息一致,都是走TCP长连接,客户端发送,服务器端确认。

微信协议简单调研笔记如下介绍:

前言

微信可调研点很多,这里仅仅从协议角度进行调研,会涉及到微信协议交换、消息收发等。所谓“弱水三千,只取一瓢”吧。

杂七杂八的,有些长,可直接拉到最后看结论好了。

一。微信协议概览

微信传输协议,官方
公布甚少,在微信技术总监所透漏PPT《微信之道―至简》文档中,有所体现。

纯个人理解:

因张小龙做邮箱Foxmail起家,继而又做了QQ Mail等,QQ Mail是国内第一个支持Exchange ActiveSync协议的免费邮箱,基于其从业背景,微信从一开始就采取基于ActiveSync的修改版状态同步协议Sync,也就再自然不过了。

一句话:增量式、按序、可靠的状态同步传输的微信协议。

大致交换简图如下:

微信端口及协议分析(java、C版)_第2张图片

如何获取新数据呢:

服务器端通知,客户端获取

客户端携带最新的SyncKey,发起数据请求

服务器端生成最新的SyncKey连同最新数据发送给客户端

基于版本号机制同步协议,可确保数据增量、有序传输

SyncKey,由服务器端序列号生成器生成,一旦有新消息产生,将会产生最新的SyncKey。类似于版本号

服务器端通知有状态更新,客户端主动获取自从上次更新之后有变动的状态数据,增量式,顺序式。

二。微信Web端简单调试

在线版本微信:

https://webpush.weixin.qq.com/

通过Firefox + Firebug组合调试,也能证实了微信大致通过交换SyncKey方式获取新数据的论述。

1. 发起GET长连接检测是否存在新的需要同步的数据

会携带上最新SyncKey

https://webpush.weixin.qq.com/cgi-bin/mmwebwx-bin/synccheck?callback=jQuery18306073923335455973_1393208247730&r=1393209241862&sid=s7c%2FsxpGRSihgZAA&uin=937355&deviceid=e542565508353877&synckey=1_620943725%7C2_620943769%7C3_620943770%7C11_620942796%7C201_1393208420%7C202_1393209127%7C1000_1393203219&_=1393209241865

返回内容:

 window.synccheck={retcode:"0",selector:"2"}
selector值大于0,表示有新的消息需要同步。

据目测,心跳周期为27秒左右。

2. 一旦有新数据,客户端POST请求主动获取同步的数据

https://webpush.weixin.qq.com/cgi-bin/mmwebwx-bin/webwxsync?sid=s7c%2FsxpGRSihgZAA&r=1393208447375

携带消息体:

{"BaseRequest":{"Uin":937355,"Sid":"s7c/sxpGRSihgZAA"},"SyncKey":{"Count":6,"List":[{"Key":1,"Val":620943725},{"Key":2,"Val":620943767},{"Key":3,"Val":620943760},{"Key":11,"Val":620942796},{"Key":201,"Val":1393208365},{"Key":1000,"Val":1393203219}]},"rr":1393208447374}

会携带上最新的SyncKey,会返回复杂结构体JSON内容。

但浏览端收取到消息之后,如何通知服务器端已确认收到了?Web版本微信,没有去做。

在以往使用过程中,曾发现WEB端有丢失消息的现象,但属于偶尔现象。但Android微信客户端(只要登陆连接上来之后)貌似就没有丢失过。

3. 发送消息流程

发起一个POST提交,用于提交用户需要发送的消息

https://webpush.weixin.qq.com/cgi-bin/mmwebwx-bin/webwxsendmsg?sid=lQ95vHR52DiaLVqo&r=1393988414386

发送内容:

{"BaseRequest":{"Uin":937355,"Sid":"lQ95vHR52DiaLVqo","Skey":"A6A1ECC6A7DE59DEFF6A05F226AA334DECBA457887B25BC6","DeviceID":"e937227863752975"},"Msg":{"FromUserName":"yongboy","ToUserName":"hehe057854","Type":1,"Content":"hello","ClientMsgId":1393988414380,"LocalID":1393988414380}}

相应内容:

{
"BaseResponse": {
"Ret": 0,
"ErrMsg": ""
}
,
"MsgID": 1020944348,
"LocalID": "1393988414380"
}

再次发起一个POST请求,用于申请最新SyncKey

https://webpush.weixin.qq.com/cgi-bin/mmwebwx-bin/webwxsync?sid=lQ95vHR52DiaLVqo&r=1393988414756

发送内容:

{"BaseRequest":{"Uin":937355,"Sid":"lQ95vHR52DiaLVqo"},"SyncKey":{"Count":6,"List":[{"Key":1,"Val":620944310},{"Key":2,"Val":620944346},{"Key":3,"Val":620944344},{"Key":11,"Val":620942796},{"Key":201,"Val":1393988357},{"Key":1000,"Val":1393930108}]},"rr":1393988414756}

响应的(部分)内容:

"SKey": "8F8C6A03489E85E9FDF727ACB95C93C2CDCE9FB9532FC15B" 

终止GET长连接,使用最新SyncKey再次发起一个新的GET长连接

https://webpush.weixin.qq.com/cgi-bin/mmwebwx-bin/synccheck?callback=jQuery1830245810089652082181393988305564&r=1393988415015&sid=lQ95vHR52DiaLVqo&uin=937355&deviceid=e937227863752975&synckey=1620944310%7C2620944348%7C3620944344%7C11620942796%7C2011393988357%7C10001393930108&=1393988415016

三。微信Android简单分析

Windows桌面端Android虚拟机中运行最新版微信(5.2),通过tcpdump/Wireshark组合封包分析,以下为分析结果。

0. 初始连接记录

简单记录微信启动之后请求:

11:20:35 dns查询

dns.weixin.qq.com

返回一组IP地址

11:20:35 DNS查询

long.weixin.qq.com

返回一组IP地址,本次通信中,微信使用了最后一个IP作为TCP长连接的连接地址。

11:20:35

http://dns.weixin.qq.com/cgi-bin/micromsg-bin/newgetdns?uin=0&clientversion=620888113&scene=0&net=1

用于请求服务器获得最优IP路径。服务器通过结算返回一个xml定义了域名:IP对应列表。仔细阅读,可看到微信已经开始了国际化的步伐:香港、加拿大、韩国等。

具体文本,请参考:https://gist.github.com/yongboy/9341884

11:20:35

获取到long.weixin.qq.com最优IP,然后建立到101.227.131.105的TCP长连接

11:21:25
POST http://short.weixin.qq.com/cgi-bin/micromsg-bin/getprofile HTTP/1.1  (application/octet-stream)
返回一个名为“micromsgresp.dat”的附件,估计是未阅读的离线消息

11:21:31
POST http://short.weixin.qq.com/cgi-bin/micromsg-bin/whatsnews HTTP/1.1  (application/octet-stream)
大概是资讯、订阅更新等

中间进行一些资源请求等,类似于
GET http://wx.qlogo.cn/mmhead/Q3auHgzwzM7NR4TYFcoNjbxZpfO9aiaE7RU5lXGUw13SMicL6iacWIf2A/96
图片等一些静态资源都会被分配到wx.qlogo.cn域名下面

不明白做什么用途
POST http://short.weixin.qq.com/cgi-bin/micromsg-bin/downloadpackage HTTP/1.1  (application/octet-stream)
输出为micromsgresp.dat文件

11:21:47
GET http://support.weixin.qq.com/cgi-bin/mmsupport-bin/reportdevice?channel=34&deviceid=A952001f7a840c2a&clientversion=620888113&platform=0&lang=zh_CN&installtype=0 HTTP/1.1
返回chunked分块数据

11:21:49
POST http://short.weixin.qq.com/cgi-bin/micromsg-bin/reportstrategy HTTP/1.1  (application/octet-stream)

1. 心跳频率约为5分钟

上次使用Wireshark分析有误(得出18分钟结论),再次重新分析,心跳频率在5分钟左右。

2. 登陆之后,会建立一个长连接,端口号为8080

简单目测为HTTP,初始以为是双通道HTTP,难道是自定义的用于双通道通信的HTTP协议吗,网络上可见资料都是模棱两可、语焉不详。

具体查看长连接初始数据通信,没有发现任何包含"HTTP"字样的数据,以为是微信自定义的TCP/HTTP通信格式。据分析,用于可能用于获取数据、心跳交换消息等用途吧。这个后面会详谈微信是如何做到的。

2.0 初始消息传输

个人资料、离线未阅读消息部分等通过 POST HTTP短连接单独获取。

2.1 二进制简单分析

抽取微信某次HTTP协议方式通信数据,16进制表示,每两个靠近的数字为一个byte字节:

微信端口及协议分析(java、C版)_第3张图片

2014-03-03_15h07_30

微信协议可能如下:

一个消息包 = 消息头 + 消息体
消息头固定16字节长度,消息包长度定义在消息头前4个字节中。

单纯摘取第0000行为例,共16个字节的头部:

00 00 00 10 00 10 00 01 00 00 00 06 00 00 00 0f

16进制表示,每两个紧挨着数字代表一个byte字节。

微信消息包格式: 1. 前4字节表示数据包长度,可变 值为16时,意味着一个仅仅包含头部的完整的数据包(可能表示着预先定义好的业务意义),后面可能还有会别的消息包 2. 2个字节表示头部长度,固定值,0x10 = 16 3. 2个字节表示谢意版本,固定值,0x01 = 1 4. 4个字节操作说明数字,可变 5. 序列号,可变 6. 头部后面紧跟着消息体,非明文,加密形式 7. 一个消息包,最小16 byte字节

通过上图(以及其它数据多次采样)分析:

0000 - 0040为单独的数据包
0050行为下一个数据包的头部,前四个字节值为0xca = 202,表示包含了从0050-0110共202个字节数据
一次数据发送,可能包含若干子数据包
换行符\n,16进制表示为0x0a,在00f0行,包含了两个换行符号
一个数据体换行符号用于更细粒度的业务数据分割 是否蒙对,需要问问做微信协议的同学
所有被标记为HTTP协议通信所发送数据都包含换行符号
2.2 动手试试猜想,模拟微信TCP长连接
开始很不解为什么会出现如此怪异的HTTP双通道长连接请求,难道基于TCP通信,然后做了一些手脚?很常规的TCP长连接,传输数据时(不是所有数据传输),被wireshark误认为HTTP长连接。这个需要做一个实验证实一下自己想法,设想如下:

写一个Ping-Pong客户端、服务器端程序,然后使用Wireshark看一下结果,是否符合判断。

Java版本的请求端,默认请求8080端口:

/**
* Ping Client
* @author nieyong
*/
package com.learn;
import io.netty.bootstrap.Bootstrap;
import io.netty.buffer.ByteBuf;
import io.netty.buffer.PooledByteBufAllocator;
import io.netty.channel.ChannelFuture;
import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.ChannelInboundHandlerAdapter;
import io.netty.channel.ChannelInitializer;
import io.netty.channel.ChannelOption;
import io.netty.channel.EventLoopGroup;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.SocketChannel;
import io.netty.channel.socket.nio.NioSocketChannel;
import java.util.concurrent.TimeUnit;
class PingClientHandler extends ChannelInboundHandlerAdapter {
private final ByteBuf firstMessage;
public PingClientHandler() {
firstMessage = PooledByteBufAllocator.DEFAULT.buffer(22);
// weixin 16 byte's header
firstMessage.writeByte(0);
firstMessage.writeByte(0);
firstMessage.writeByte(0);
firstMessage.writeByte(16);
firstMessage.writeByte(0);
firstMessage.writeByte(16);
firstMessage.writeByte(0);
firstMessage.writeByte(1);
firstMessage.writeByte(0);
firstMessage.writeByte(0);
firstMessage.writeByte(0);
firstMessage.writeByte(6);
firstMessage.writeByte(0);
firstMessage.writeByte(0);
firstMessage.writeByte(0);
firstMessage.writeByte(1);
// just for /n
firstMessage.writeByte('\n'); // 1 byte
// footer 16 byte
String welcome = "hello"; // 5 byte
firstMessage.writeBytes(welcome.getBytes());
}
@Override
public void channelActive(ChannelHandlerContext ctx) {
ctx.writeAndFlush(firstMessage);
}
@Override
public void channelRead(final ChannelHandlerContext ctx, final Object msg)
throws Exception {
ctx.executor().schedule(new Runnable() {
@Override
public void run() {
ctx.channel().writeAndFlush(msg);
}
}, 1, TimeUnit.SECONDS);
}
@Override
public void channelReadComplete(ChannelHandlerContext ctx) throws Exception {
ctx.flush();
}
@Override
public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) {
System.err.println("Unexpected exception from downstream :"
+ cause.getMessage());
ctx.close();
}
}
public class PingClient {
private final String host;
private final int port;
public PingClient(String host, int port) {
this.host = host;
this.port = port;
}
public void run() throws Exception {
EventLoopGroup group = new NioEventLoopGroup();
try {
Bootstrap b = new Bootstrap();
b.group(group).channel(NioSocketChannel.class)
.option(ChannelOption.TCP_NODELAY, true)
.handler(new ChannelInitializer<SocketChannel>() {
@Override
public void initChannel(SocketChannel ch)
throws Exception {
ch.pipeline().addLast(new PingClientHandler());
}
});
ChannelFuture f = b.connect(host, port).sync();
f.channel().closeFuture().sync();
} finally {
// Shut down the event loop to terminate all threads.
group.shutdownGracefully();
}
}
public static void main(String[] args) throws Exception {
String host = "127.0.0.1";
int port = 8080;
if (args.length == 3) {
host = args[0];
port = Integer.parseInt(args[1]);
}
new PingClient(host, port).run();
}
}

C语言版本的服务器程序,收到什么发送什么,没有任何逻辑,默认绑定8080端口:

/**
* how to compile it:
* gcc pong_server.c -o pong_server /usr/local/lib/libev.a -lm
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include "../include/ev.h"
static int server_port = 8080;
struct ev_loop *loop;
typedef struct {
int fd;
ev_io ev_read;
} client_t;
ev_io ev_accept;
static void free_res(struct ev_loop *loop, ev_io *ws);
int setnonblock(int fd) {
int flags = fcntl(fd, F_GETFL);
if (flags < 0)
return flags;
flags |= O_NONBLOCK;
if (fcntl(fd, F_SETFL, flags) < 0)
return -1;
return 0;
}
static void read_cb(struct ev_loop *loop, ev_io *w, int revents) {
client_t *client = w->data;
int r = 0;
char rbuff[1024];
if (revents & EV_READ) {
r = read(client->fd, &rbuff, 1024);
}
if (EV_ERROR & revents) {
fprintf(stderr, "error event in read\n");
free_res(loop, w);
return ;
}
if (r < 0) {
fprintf(stderr, "read error\n");
ev_io_stop(EV_A_ w);
free_res(loop, w);
return;
}
if (r == 0) {
fprintf(stderr, "client disconnected.\n");
ev_io_stop(EV_A_ w);
free_res(loop, w);
return;
}
send(client->fd, rbuff, r, 0);
}
static void accept_cb(struct ev_loop *loop, ev_io *w, int revents) {
struct sockaddr_in client_addr;
socklen_t client_len = sizeof(client_addr);
int client_fd = accept(w->fd, (struct sockaddr *) &client_addr, &client_len);
if (client_fd == -1) {
fprintf(stderr, "the client_fd is NULL !\n");
return;
}
client_t *client = malloc(sizeof(client_t));
client->fd = client_fd;
if (setnonblock(client->fd) < 0)
err(1, "failed to set client socket to non-blocking");
client->ev_read.data = client;
ev_io_init(&client->ev_read, read_cb, client->fd, EV_READ);
ev_io_start(loop, &client->ev_read);
}
int main(int argc, char const *argv[]) {
int ch;
while ((ch = getopt(argc, argv, "p:")) != -1) {
switch (ch) {
case 'p':
server_port = atoi(optarg);
break;
}
}
loop = ev_default_loop(0);
struct sockaddr_in listen_addr;
int reuseaddr_on = 1;
int listen_fd = socket(AF_INET, SOCK_STREAM, 0);
if (listen_fd < 0)
err(1, "listen failed");
if (setsockopt(listen_fd, SOL_SOCKET, SO_REUSEADDR, &reuseaddr_on, sizeof(reuseaddr_on)) == -1)
err(1, "setsockopt failed");
memset(&listen_addr, 0, sizeof(listen_addr));
listen_addr.sin_family = AF_INET;
listen_addr.sin_addr.s_addr = INADDR_ANY;
listen_addr.sin_port = htons(server_port);
if (bind(listen_fd, (struct sockaddr *) &listen_addr, sizeof(listen_addr)) < 0)
err(1, "bind failed");
if (listen(listen_fd, 5) < 0)
err(1, "listen failed");
if (setnonblock(listen_fd) < 0)
err(1, "failed to set server socket to non-blocking");
ev_io_init(&ev_accept, accept_cb, listen_fd, EV_READ);
ev_io_start(loop, &ev_accept);
ev_loop(loop, 0);
return 0;
}
static void free_res(struct ev_loop *loop, ev_io *w) {
client_t *client = w->data;
if (client == NULL) {
fprintf(stderr, "the client is NULL !!!!!!");
return;
}
ev_io_stop(loop, &client->ev_read);
close(client->fd);
free(client);
}

这里有一个现场图:

微信端口及协议分析(java、C版)_第4张图片

可以尝试稍微改变输出内容,去除换行符“\n”,把端口换成9000,试试看,就会发现Wireshark输出不同的结果来。

2.3 结论是什么呢?

若使用原始TCP进行双向通信,则需要满足以下条件,可以被类似于Wireshark协议拦截器误认为是HTTP长连接:

使用80/8080端口(81/3128/8000经测试无效) 也许8080一般被作为WEB代理服务端口,微信才会享用这个红利吧。
输出的内容中,一定要包含换行字符"\n"
因此,可以定性为微信使用了基于8080端口TCP长连接,一旦数据包中含有换行"\n"符号,就会被Wireshark误认为HTTP协议。可能微信是无心为之吧。

3. 新消息获取方式

TCP长连接接收到服务器通知有新消息需要获取

APP发起一个HTTP POST请求获取新状态消息,会带上当前SyncKey 地址为:http://short.weixin.qq.com/cgi-bin/micromsg-bin/reportstrategy HTTP/1.1,看不到明文

APP获取到新的消息,会再次发起一次HTTP POST请求,告诉服务器已确认收到,同时获取最新SyncKey 地址为:http://short.weixin.qq.com/cgi-bin/micromsg-bin/kvreport,看不到明文

接受一个消息,TCP长连接至少交互两次,客户端发起两次HTTP POST请求 具体每次交互内容是什么,有些模糊
服务器需要支持:状态消息获取标记,状态消息确认收取标记。只有被确认收到,此状态消息才算是被正确消费掉
多个不同设备同一账号同时使用微信,同一个状态消息会会被同时分发到多个设备上

此时消息请求截图如下:

微信端口及协议分析(java、C版)_第5张图片

4. 发送消息方式

发送消息走已经建立的TCP长连接通道,发送消息到服务器,然后接受确认信息等,产生一次交互。

小伙伴接收到信息阅读也都会收到服务器端通知,产生一次交互等。

可以确定,微信发送消息走TCP长连接方式,因为不对自身状态数据产生影响,应该不交换SyncKey。

在低速网络下,大概会看到消息发送中的提示,属于消息重发机制

网络不好有时客户端会出现发送失败的红色感叹号
已发送到服务器但未收到确认的消息,客户端显示红色感叹号,再次重发,服务器作为重复消息处理,反馈确认

上传图片,会根据图片大小,分割成若干部分(大概1.5K被划分为一部分),同一时间点,客户端会发起若干次POST请求,各自上传成功之后,服务器大概会合并成一个完整图片,返回一个缩略图,显示在APP聊天窗口内。APP作为常规的文字消息发送到服务器端上传音频,则单独走TCP通道,一个两秒的录制音频,客户端录制完毕,分为两块传输,一块最大1.5K左右,服务端响应一条数据通知确认收到。共三次数据传输。音频和纯文字信息一致,都是走TCP长连接,客户端发送,服务器端确认。

四。微信协议小结

发布的消息对应一个ID(只要单个方向唯一即可,服务器端可能会根ID判断重复接收),消息重传机制确保有限次的重试,重试失败给予用户提示,发送成功会反馈确认,客户端只有收到确认信息才知道发送成功。发送消息可能不会产生新SyncKey。
基于版本号(SynKey)的状态消息同步机制,增量、有序传输需求水到渠成。长连接通知/短连接获取、确认等,交互方式简单,确保了消息可靠谱、准确无误到达。

客户端/服务器端都会存储消息ID处理记录,避免被重复消费客户端获取最新消息,但未确认,服务器端不会认为该消息被消费掉。下次客户端会重新获取,会查询当前消息是否被处理过。根据一些现象猜测。

总体上看,微信协议跨平台(TCP或HTPP都可呈现,处理方式可统一),通过“握手”同步,很可靠,无论哪一个平台都可以支持的很好微信协议最小成本为16字节,大部分时间若干个消息包和在一起,批量传输。微信协议说不上最简洁,也不是最节省流量,但是非常成功的。

若服务器检测到一些不确定因素,可能会导致微启用安全套接层SSL协议进行常规的TCP长连接传输。短连接都没有发生变化
以上,根据有限资料和数据拦截观察总结得出,����嗦嗦,勉强凑成一篇,会存在一些不正确之处,欢迎给予纠正。在多次

五。附录

Microsoft Exchange Active Sync协议,简称EAS,分为folderrsync(同步文件夹目录,即邮箱内有哪几个文件夹)和sync(每个文件夹内有哪些文档)两部分。

某网友总结的协议一次回话大致示范:

Client:   synckey=0 //第一次key为0
Server:  newsynckey=1235434    //第一次返回新key
Client:   synckey=1235434   //使用新key查询
Server:  newsynckey=1647645,data=*****//第一次查询,得到新key和数据
Client:   synckey=1647645
Server:  newsynckey=5637535,data=null //第二次查询,无新消息
Client:   synckey=5637535
Server: newsynckey=8654542, data=****//第三次查询,增量同步

上页中的相邻请求都是隔固定时间的,如两分钟

客户端每次使用旧key标记自己的状态,服务端每次将新key和增量数据一起返回。

key是递增的,但不要求连续

请求的某个参数决定服务器是否立即返回

你可能感兴趣的:(微信端口及协议分析(java、C版))