基于tensorflow搭建一个复杂卷积神经网络模型(cifar-10)


上一篇搭建了一个简单的cnn网络用来识别手写数字。

基于tensorflow搭建一个简单的CNN模型(code)

这次我们将要搭建一个较复杂的卷积神经网络结构去对CIFAR-10进行训练和识别。

1. load 一些必要的库和 start a graph session:


import os


import sys


import tarfile


import matplotlib.pyplot as plt


import numpy as np


import tensorflow as tf


from six.moves import urllib


sess = tf. Session()


2. 定义一些模型参数


batch_size = 128


output_every = 50


generations = 20000


eval_every = 500


image_height = 32


image_width = 32


crop_height = 24


crop_width = 24


num_channels = 3


num_targets = 10


data_dir = 'temp'


extract_folder = 'cifar-10-batches-bin'


3. 定义训练学习率等几个参数


learning_rate = 0.1


lr_decay = 0.9


num_gens_to_wait = 250


4. 现在我们建立可以读取二进制 CIFAR-10图片的参数


image_vec_length = image_height * image_width * num_channels


record_length = 1 + image_vec_length


5. 建立数据的路径及下载CIFAR-10数据集图片


data_dir = 'temp'


if not os.path.exists(data_dir):


    os.makedirs(data_dir)


    cifar10_url = 'http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz'


    data_file = os.path.join(data_dir, 'cifar-10-binary.tar.gz')


if not os.path.isfile(data_file):


    # Download file


    filepath, _ = urllib.request.urlretrieve(cifar10_url, data_file, progress)


    # Extract file


    tarfile.open(filepath, 'r:gz').extractall(data_dir)


6. 建立函数读取随机扭曲的图片


def read_cifar_files(filename_queue, distort_images = True):


    reader = tf.FixedLengthRecordReader(record_bytes=record_length)


    key, record_string = reader.read(filename_queue)


    record_bytes = tf.decode_raw(record_string, tf.uint8)


    # Extract label


    image_label = tf.cast(tf.slice(record_bytes, [0], [1]),


    tf.int32)


    # Extract image


    image_extracted = tf.reshape(tf.slice(record_bytes, [1],


    [image_vec_length]), [num_channels, image_height, image_width])


    # Reshape image


    image_uint8image = tf.transpose(image_extracted, [1, 2, 0])


    reshaped_image = tf.cast(image_uint8image, tf.float32)


    # Randomly Crop image


    final_image = tf.image.resize_image_with_crop_or_pad(reshaped_


    image, crop_width, crop_height)


    if distort_images:


        # Randomly flip the image horizontally, change the brightness and contrast


        final_image = tf.image.random_flip_left_right(final_image)


        final_image = tf.image.random_brightness(final_image,max_delta=63)


        final_image = tf.image.random_contrast(final_


        image,lower=0.2, upper=1.8)


    # Normalize whitening


    注意## For anyone else who has this problem, per_image_whitening was         replaced by per_image_standardization


    # final_image = tf.image.per_image_whitening(final_image)


    final_image = tf.image.per_image_standardization(final_image)


    return(final_image, image_label)


## by per_image_standardization in v0.12

## For anyone else who has this problem, per_image_whitening was replaced

## by per_image_standardization in v0.12

final_image = tf.image.per_image_standardization(final_image)

7. 定义一个函数传入数据


def input_pipeline(batch_size, train_logical=True):


    if train_logical:


        files = [os.path.join(data_dir, extract_folder, 'data_


        batch_{}.bin'.format(i)) for i in range(1,6)]


    else:


        files = [os.path.join(data_dir, extract_folder, 'test_batch.bin')]


    filename_queue = tf.train.string_input_producer(files)


    image, label = read_cifar_files(filename_queue)


    min_after_dequeue = 1000


    capacity = min_after_dequeue + 3 * batch_size


    example_batch, label_batch = tf.train.shuffle_batch([image,


    label], batch_size, capacity, min_after_dequeue)


    return(example_batch, label_batch)


8. 定义模型


# Define the model architecture, this will return logits from images


def cifar_cnn_model(input_images, batch_size, train_logical=True):


    def truncated_normal_var(name, shape, dtype):


         return(tf.get_variable(name=name, shape=shape, dtype=dtype,         initializer=tf.truncated_normal_initializer(stddev=0.05)))


    def zero_var(name, shape, dtype):


         return(tf.get_variable(name=name, shape=shape, dtype=dtype, initializer=tf.constant_initializer(0.0)))


         # First Convolutional Layer


    with tf.variable_scope('conv1') as scope:


          # Conv_kernel is 5x5 for all 3 colors and we will create 64 features


         conv1_kernel = truncated_normal_var(name='conv_kernel1', shape=[5, 5, 3, 64], dtype=tf.float32)


         # We convolve across the image with a stride size of 1


         conv1 = tf.nn.conv2d(input_images, conv1_kernel, [1, 1, 1, 1], padding='SAME')


         # Initialize and add the bias term


         conv1_bias = zero_var(name='conv_bias1', shape=[64], dtype=tf.float32)


         conv1_add_bias = tf.nn.bias_add(conv1, conv1_bias)


         # ReLU element wise


         relu_conv1 = tf.nn.relu(conv1_add_bias)


         # Max Pooling


         pool1 = tf.nn.max_pool(relu_conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],padding='SAME', name='pool_layer1')


         # Local Response Normalization (parameters from paper)


         # paper: http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks


         norm1 = tf.nn.lrn(pool1, depth_radius=5, bias=2.0, alpha=1e-3, beta=0.75, name='norm1')


         # Second Convolutional Layer


    with tf.variable_scope('conv2') as scope:


         # Conv kernel is 5x5, across all prior 64 features and we create 64 more features


         conv2_kernel = truncated_normal_var(name='conv_kernel2', shape=[5, 5, 64, 64], dtype=tf.float32)


         # Convolve filter across prior output with stride size of 1


         conv2 = tf.nn.conv2d(norm1, conv2_kernel, [1, 1, 1, 1], padding='SAME')


         # Initialize and add the bias


         conv2_bias = zero_var(name='conv_bias2', shape=[64], dtype=tf.float32)


         conv2_add_bias = tf.nn.bias_add(conv2, conv2_bias)


         # ReLU element wise


         relu_conv2 = tf.nn.relu(conv2_add_bias)


         # Max Pooling


         pool2 = tf.nn.max_pool(relu_conv2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],           padding='SAME', name='pool_layer2')


         # Local Response Normalization (parameters from paper)


         norm2 = tf.nn.lrn(pool2, depth_radius=5, bias=2.0, alpha=1e-3, beta=0.75, name='norm2')


         # Reshape output into a single matrix for multiplication for the fully connected layers


         reshaped_output = tf.reshape(norm2, [batch_size, -1])


         reshaped_dim = reshaped_output.get_shape()[1].value


         # First Fully Connected Layer


    with tf.variable_scope('full1') as scope:


        # Fully connected layer will have 384 outputs.


        full_weight1 = truncated_normal_var(name='full_mult1', shape=[reshaped_dim, 384], dtype=tf.float32)


        full_bias1 = zero_var(name='full_bias1', shape=[384], dtype=tf.float32)


        full_layer1 = tf.nn.relu(tf.add(tf.matmul(reshaped_output, full_weight1), full_bias1))


        # Second Fully Connected Layer


    with tf.variable_scope('full2') as scope:


        # Second fully connected layer has 192 outputs.


        full_weight2 = truncated_normal_var(name='full_mult2', shape=[384, 192], dtype=tf.float32)


        full_bias2 = zero_var(name='full_bias2', shape=[192], dtype=tf.float32)


        full_layer2 = tf.nn.relu(tf.add(tf.matmul(full_layer1, full_weight2), full_bias2))


        # Final Fully Connected Layer -> 10 categories for output (num_targets)


    with tf.variable_scope('full3') as scope:


        # Final fully connected layer has 10 (num_targets) outputs.


        full_weight3 = truncated_normal_var(name='full_mult3', shape=[192,       num_targets], dtype=tf.float32)


        full_bias3 =  zero_var(name='full_bias3', shape=[num_targets], dtype=tf.float32)


        final_output = tf.add(tf.matmul(full_layer2, full_weight3), full_bias3)


        return(final_output)


9.  定义loss函数


def cifar_loss(logits, targets):


    # Get rid of extra dimensions and cast targets into integers


    targets = tf.squeeze(tf.cast(targets, tf.int32))


    # Calculate cross entropy from logits and targets


    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=targets)


    # Take the average loss across batch size


    cross_entropy_mean = tf.reduce_mean(cross_entropy)


    return(cross_entropy_mean)


10.定义训练,其中学习率将要以指数下降。


def train_step(loss_value, generation_num):


    # Our learning rate is an exponential decay (stepped down)


    model_learning_rate = tf.train.exponential_decay(learning_rate, generation_num, num_gens_to_wait, lr_decay, staircase=True)


    # Create optimizer


    my_optimizer = tf.train.GradientDescentOptimizer(model_learning_rate)


    # Initialize train step


    train_step = my_optimizer.minimize(loss_value)


    return(train_step)


11. 计算准确率


def accuracy_of_batch(logits, targets):


    # Make sure targets are integers and drop extra dimensions


    targets = tf.squeeze(tf.cast(targets, tf.int32))


    # Get predicted values by finding which logit is the greatest


    batch_predictions = tf.cast(tf.argmax(logits, 1), tf.int32)


    # Check if they are equal across the batch


    predicted_correctly = tf.equal(batch_predictions, targets)


    # Average the 1's and 0's (True's and False's) across the batch size


    accuracy = tf.reduce_mean(tf.cast(predicted_correctly, tf.float32))


    return(accuracy)


12.输入图片


images, targets = input_pipeline(batch_size, train_logical=True)


test_images, test_targets = input_pipeline(batch_size, train_logical=False)


13. 声明训练模型和测试时模型用同样的变量

with tf.variable_scope('model_definition') as scope:

    # Declare the training network model

    model_output = cifar_cnn_model(images, batch_size)

    # Use same variables within scope

    scope.reuse_variables()

    # Declare test model output

    test_output = cifar_cnn_model(test_images, batch_size)

14.初始化loss和测试精度函数


loss = cifar_loss(model_output, targets)


accuracy = accuracy_of_batch(test_output, test_targets)


generation_num = tf.Variable(0, trainable=False)


train_op = train_step(loss, generation_num)


15. 初始化网络的所有变量


# Initialize Variables


print('Initializing the Variables.')


init = tf.initialize_all_variables()


sess.run(init)


# Initialize queue (This queue will feed into the model, so no placeholders necessary)


tf.train.start_queue_runners(sess=sess)


16. 迭代训练,保存loss和测试accuracy


# Train CIFAR Model


print('Starting Training')


train_loss = []


test_accuracy = []


for i in range(generations):


    _, loss_value = sess.run([train_op, loss])


    if (i+1) % output_every == 0:


        train_loss.append(loss_value)


        output = 'Generation {}: Loss = {:.5f}'.format((i+1), loss_value)


        print(output)


    if (i+1) % eval_every == 0:


        [temp_accuracy] = sess.run([accuracy])


        test_accuracy.append(temp_accuracy)


        acc_output = ' --- Test Accuracy = {:.2f}%.'.format(100.*temp_accuracy)


        print(acc_output)


17.使用 matplotlib 讲loss和测试accuracy图像输出来


# Print loss and accuracy


# Matlotlib code to plot the loss and accuracies


eval_indices = range(0, generations, eval_every)


output_indices = range(0, generations, output_every)


# Plot loss over time


plt.plot(output_indices, train_loss, 'k-')


plt.title('Softmax Loss per Generation')


plt.xlabel('Generation')


plt.ylabel('Softmax Loss')


plt.show()


# Plot accuracy over time


plt.plot(eval_indices, test_accuracy, 'k-')


plt.title('Test Accuracy')


plt.xlabel('Generation')


plt.ylabel('Accuracy')


plt.show()


基于tensorflow搭建一个复杂卷积神经网络模型(cifar-10)_第1张图片
在CIFAR-10的识别结果,左图是训练loss,右图是test accuracy

你可能感兴趣的:(基于tensorflow搭建一个复杂卷积神经网络模型(cifar-10))