- C++最小生成树算法详解
你的冰西瓜
c++算法图论最小生成树
C++最小生成树算法详解引言在图论中,最小生成树(MinimumSpanningTree,MST)是一个非常重要的概念。对于给定的带权无向连通图,最小生成树是一棵包含图中所有顶点且边权之和最小的树。它在网络设计、电路布线等实际应用中具有广泛的意义。本文将详细介绍两种常见的最小生成树算法:Prim算法和Kruskal算法,并提供C++实现代码。一、最小生成树的基本概念1.1生成树一个连通图的生成树是
- 算法学习笔记:10.Prim 算法——从原理到实战,涵盖 LeetCode 与考研 408 例题
呆呆企鹅仔
算法学习算法学习笔记JavaPrim
在图论的世界里,最小生成树(MinimumSpanningTree,MST)是一个至关重要的概念,它在通信网络设计、电路布线、交通规划等领域有着广泛的应用。求解最小生成树的算法中,Prim算法以其独特的“逐步扩展”思想占据着重要地位。Prim算法的基本概念在正式介绍Prim算法之前,我们先回顾一下最小生成树的定义:对于一个具有n个顶点的带权连通图,其最小生成树是包含所有n个顶点的一棵无环子图,且该
- 代码随想录|图论理论基础
1.图的种类(有向图和无向图)有向图:图中边有方向无向图:图中边无方向加权有向图:图中边是有权值和方向的,无向图也是如此2.度(无向图中有几条边连接该节点,该节点就有几度)出度:从该节点出发的边的个数入度:指向该节点边的个数3.连通性(在图中表示节点的联通情况,我们称之为连通性)连通图:在无向图中,任何两个节点都是可以到达的(可以借助其他节点)非连通图:有节点不能到达其他节点强连通图:在有向图中,
- 最小生成树算法的解题思路与 C++ 算法应用
Aobing_peterJr
OI算法分析算法c++
一、最小生成树算法针对问题类型及概述先来简要陈述一下树的概念:一个由NNN个点和N−1N-1N−1条边组成的无向连通图。由此,我们可以得知生成树算法的概念:在一个NNN个点的图中找出一个由N−1N-1N−1条边组成的树。具体来说,我们是在一个图G(N,M)G(N,M)G(N,M)中找到一个生成树G(N,N−1)G(N,N-1)G(N,N−1),在生成树G(N,N−1)G(N,N-1)G(N,N−1
- 2024睿抗CAIP-编程技能赛-本科组(省赛)题解
hongjianMa
#算法竞赛训练算法睿抗题解
蓝桥杯拿了个省三,天梯没进1队,睿抗是我最后的机会RC-u4章鱼图的判断题目描述对于无向图G=(V,E)G=(V,E)G=(V,E),我们定义章鱼图为:有且仅有一个简单环(即没有重复顶点的环),且所有其余边和点都构成附着在该环上的树结构。换言之,是一个环作为“身体”,多个树作为“触手”的连通图。给定一个无向图,请判断图中是否存在且仅存在一个章鱼子图。输入格式第一行是一个正整数TTT,表示数据的组数
- 数据结构-图结构转化为二叉树
安小二
重要算法图结构二叉树
不多bb先上代码首先声明这个图不是连通图,存在3个连通分支#includeusingnamespacestd;structTreeNode{intdata;structTreeNode*f;structTreeNode*s;};charname[13]={'a','b','c','d','e','f','g','h','i','j','k','l','m'};//data[a],a号点的名字str
- ruskal 最小生成树算法
19要加油
算法
https://www.lanqiao.cn/problems/17138/learning/并查集+ruskal最小生成树算法Kruskal算法是一种用于在加权无向连通图中寻找最小生成树(MST)的经典算法。其核心思想是基于贪心策略,通过按边权从小到大排序并逐步选择边,确保最终形成的树满足以下条件:包含图中所有顶点(即生成树)。边权之和最小(即最小性)。不形成环路(确保是树结构)。算法步骤排序边
- 26考研408——疑难杂症、好题思考题分享汇总~
408答疑+v:18675660929
26考研408——疑难杂症好题思考题分享~考研笔记数据结构算法c语言
408答疑更新日志时间:2025-4-20内容:深度解析树的结点关系计算深度解析哈夫曼树路径问题深度解析无向图连通分量深度解析平衡二叉树的删除深度解析二叉平衡树的最大深度时间:2025-4-20内容:B树失败结点个数计算好题分享树结构与序列插入好题分享带权无向图好题分享图的遍历好题分享时间:2025-5-11内容:树与二叉树转换好题分享无向图连通图好题分享有向图强连通分量好题分享(一)有向图强连通
- C++ 数据结构之图:从理论到实践
Run1.
C++数据结构c++数据结构图论
一、图的基本概念1.1图的定义与组成图(Graph)由顶点(Vertex)和边(Edge)组成,形式化定义为:G=(V,E)顶点集合V:表示实体(如城市、用户)边集合E:表示实体间关系(如道路、社交关系)1.2图的分类类型特点应用场景无向图边无方向性社交网络有向图边有方向性网页链接加权图边带权值路径规划有环图包含环路状态机连通图所有顶点连通网络拓扑二、图的存储结构2.1邻接矩阵使用二维数组存储顶点
- 图论——最小生成树:Prim算法及优化、Kruskal算法,及时间复杂度比较
avq94452
javac/c++
转载自——》https://www.cnblogs.com/ninedream/p/11203704.html最小生成树:一个有n个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有n个结点,并且有保持图连通的最少的边。简单来说就是有且仅有n个点n-1条边的连通图。而最小生成树就是最小权重生成树的简称,即所有边的权值之和最小的生成树。最小生成树问题一般有以下两种求解方式。一、Prim算法
- 图的最小生成树--Prim算法与Kruskal算法
MinBadGuy
数据结构与算法图论primkruskal
1.相关概念1.1生成树概念所谓一个图的生成树是一个极小连通子图,它含有图中全部的n个顶点,但只有足以构成一棵树的n-1条边。从上述定义可知,如果一个图有n个顶点和小于n-1条边,则是非连通图,如果它多余n-1条边,必定构成一个环。注意:(1)一个图可以有多棵不同的生成树;(2)具有n-1条边并不一定是生成树。1.2最小生成树给定一个连通网,在该往的所有生成树中,使得各边权值之和最小的那棵生成树称
- 最小生成树:普里姆算法与克鲁斯卡尔算法的比较与实现
心灵深处的闪耀光芒
算法编程
最小生成树:普里姆算法与克鲁斯卡尔算法的比较与实现最小生成树(MinimumSpanningTree)是图论中的一个重要概念,用于在给定的带权无向连通图中找到一棵包含所有顶点且边权值之和最小的树。在解决最小生成树问题时,普里姆算法(Prim’salgorithm)和克鲁斯卡尔算法(Kruskal’salgorithm)是两种常用的方法。本文将对这两种算法进行比较,并提供相应的源代码实现。普里姆算法
- 数据结构:最小生成树的普里姆算法和克鲁斯卡尔算法
CS创新实验室
考研复习408数据结构算法图论计算机考研
对于一个带权(假设每条边上的权均为大于零的实数)连通无向图G中的不同生成树,其每棵树的所有边上的权值之和也可能不同;图的所有生成树中具有边上的权值之和最小的树称为图的最小生成树(MinimalSpanningTree)。按照生成树的定义,nnn个顶点的连通图的生成树有nnn个顶点、(n−1)(n-1)(n−1)条边。因此,构造最小生成树的准则有以下3条:必须只使用该图中的边来构造最小生成树;必须使
- 设计一个算法 判断一个无向图G是否是一颗树
ZHorcrux
数据结构算法图论dfs
算法思想:一个有n个顶点的图是一棵树的条件是有n个顶点的连通图&有n-1条边即除了根结点其他结点都有一条边与他直接相连。voidDFS2(AGraph*G,intv,int&vn,int&en){ArcNode*p;visit[v]=1;++vn;p=G->adjlist[v].firstarc;while(p!=NULL){++en;if(visit[p->adjvex]==0)DFS2(G,p
- 数据结构C语言版第二版(名师严蔚敏最新力作)人民邮电出版社
aging88
数据结构c语言开发语言
2022年5月10日星期二课堂笔记回顾期末考1、已知一个完全无向图的顶点有8个,则该图最多有(28)条边解析:(8*7)/2=282、已知有向图的某一个顶点的入度为3,出度也为3,则该顶点的度是(6)3、连通图如何转换为最小生成树?n个顶点,n-1条边6.5图的遍历6.5.1深度优先搜索1、DFS2、BFS2022年5月12日星期四课堂笔记6.6.3拓扑排序1、AOV-网什么叫AOV-网答:有向无
- LeeCode 133题:克隆图
zh_xuan
leecodeleetcode
给你无向连通图中一个节点的引用,请你返回该图的深拷贝(克隆)。图中的每个节点都包含它的值val(int)和其邻居的列表(list[Node])。classNode{publicintval;publicListneighbors;}测试用例格式:简单起见,每个节点的值都和它的索引相同。例如,第一个节点值为1(val=1),第二个节点值为2(val=2),以此类推。该图在测试用例中使用邻接列表表示。
- 图论的学习笔记(1)
sml259(劳改版)
图论笔记数据结构拓扑排序
目录一、图的存储1、邻接矩阵2、邻接表二、连通图和强连通图1、连通图(无向图)2、强连通图(有向图)三、图的判环1、无向图判环2、有向图判环(重点)题目描述输入格式输出格式输入输出样例说明/提示一、图的存储1、邻接矩阵如果图的边比较密集(稠密图),或者图的顶点较少(小于1000),那么这个图一般用邻接矩阵来表示。空间复杂度O(V^2),其中V是顶点数目。2、邻接表如果图的边比较稀疏(稀疏图),或者
- [leetcode]1786. 从第一个节点出发到最后一个节点的受限路径数(Dijkstra+记忆化搜索/dp)
Joe_Wang5
leetcode算法图论
题目链接题意给定一个无向连通图,edges={u,v,w}表示uuu和vvv之间有一条无向边,边权为wwwnnn个点[1,n][1,n][1,n]每个点到nnn的最短路为dis[i]dis[i]dis[i]定义受限路径:从起点111到nnn,路径上的dis[i]dis[i]dis[i]递减求1->n的受限路径方案数方法一Dijkstra+记忆化搜索思路通过Dijkstra预处理出每个点距离nnn的
- Kruskal 算法介绍
chengqiuming
数据结构与算法Kruskal算法最小生成树图论连通分支贪心选择
一点睛构造最小生成树还有一种算法,即Kruskal算法:设图G=(V,E)是无向连通带权图,V={1,2,...n};设最小生成树T=(V,TE),该树的初始状态只有n个节点而无边的非连通图T=(V,{}),Kruskal算法将这n个节点看成n个孤立的连通分支。它首先将所有边都按权值从小到大排序,然后值要在T中选的边数不到n-1,就做这样贪心选择:在边集E中选择权值最小的边(i,j),如果将边(i
- 【数据结构】图解图论:度、路径、连通性,五大概念一网打尽
蒙奇D索大
保姆级教学数据结构(DS)数据结构图论算法考研改行学it
图的基本概念导读一、顶点的度二、路径三、距离四、连通五、子图结语**内容总结****下期预告****互动提醒**导读大家好,很高兴又和大家见面啦!!!在上一篇中,我们初步认识了图的定义与分类。今天,我们将深入探讨图的核心概念:•顶点的度(无向图与有向图的入度、出度)•路径与回路(简单路径、简单回路、路径长度的计算)•距离与连通性(连通图、强连通图的判断)•子图与连通分量(生成子图、极大连通子图)通
- 408第二轮复习 数据结构 第六章 图
一只大小菜
数据结构图论
408第二轮复习数据结构第六章图的定义图的存储图的定义简单图:无自环和重边,对于简单完全图来说|E|的取值0到n(n-1)/2,有向图是0到n(n-1)子图:如果Va是Vb的子集且Ea是Eb的子集则称Ga是Gb的子图连通、连通图和连通分量:无向图中任意两点都是连通为连通图,极大连通子图称为连通分量强连通分量、强连通分量,在有向图中任意两点都是连通为强连通图、极大连通子图称为强连通分量生成树、生成森
- 信息学奥赛一本通 1524:旅游航道
君义_noip
信息学奥赛一本通题解信息学奥赛算法C++图论
【题目链接】ybt1524:旅游航道【题目考点】1.图论:割边(桥)【解题思路】一个星球是一个顶点,一条航道是一条无向边,任意两星球之间可以通过航道到达,说明该图是连通图。可以认为输入数据中没有重边和自环。“如果某一条航道的删除使得一些星球不能到达,那么这条航道是不能删除的,称之为「主要航道」”,显然主要航道就是桥。该题求一个连通图的桥的数量,使用tarjan算法可以完成。【题解代码】解法1:ta
- 信息学奥赛一本通 1514:【例 2】最大半连通子图 | 洛谷 P2272 [ZJOI2007] 最大半连通子图
君义_noip
洛谷题解信息学奥赛一本通题解图论C++信息学奥赛
【题目链接】ybt1514:【例2】最大半连通子图洛谷P2272[ZJOI2007]最大半连通子图【题目考点】1.图论:强连通分量缩点2.图论:拓扑排序有向无环图动规【解题思路】对于图中任意两顶点u、v,满足u到v或v到u有路径,该图就是单向连通图。本题中的半连通图,指的就是单向连通图。导出图,指的是选择顶点之间的所有边也都必须选择。该题求图中最大的半连通子图,而且该图必须是导出图,也就是选择顶点
- Leetcode 刷题笔记1 图论part01
平乐君
leetcode笔记图论
图论的基础知识:图的种类:有向图(边有方向)、无向图(边无方向)、加权有向图(边有方向和权值)度:无向图中几条边连接该节点,该节点就有几度;有向图中每个节点有入度和出度连通性:在无向图中,任何两个节点都是可以到达的,称之为连通图,否则称之为非连通图在有向图中,热河两个节点是可以相互到达的,称之为强连通图联通分量:在无向图中的极大连通子图称之为该图的一个连通分量强连通分量:有向图中极大强连通子图称之
- 图论:以二维数组表示的连通图/树应如何表示?leetcode1042.不邻接种花
坠金
技术面算法图论算法leetcode
1042.不邻接植花-力扣(LeetCode)容器在这道题中输入类似[[1,2],[3,4]],这意味着花园1连通了花园2,花园3连通了花园4。那么该怎么根据这个输入,获取一个方便后面算法的表示呢?我们通常管这种存放邻居的数据格式叫做:邻接表通常我的思路是使用下列容器作为邻接表:哈希表,key就是花园i,value是与花园i接壤的其他所有花园。二维数组,第i个数组中的元素是与花园i接壤的其他所有花
- 笔记:代码随想录算法训练营day56:图论理论基础、深搜理论基础、98. 所有可达路径、广搜理论基础
jingjingjing1111
笔记
学习资料:代码随想录连通图是给无向图的定义,强连通图是给有向图的定义朴素存储:二维数组邻接矩阵邻接表:list基础知识:C++容器类|菜鸟教程深搜是沿着一个方向搜到头再不断回溯,转向;广搜是每一次搜索要把当前能够得到的方向搜个遍深搜三部曲:传入参数、终止条件、处理节点+递推+回溯98.所有可达路径卡码网题目链接(ACM模式)先是用邻接矩阵,矩阵的x,y表示从x到y有一条边主要还是用回溯方法遍历整个
- 【算法每日一练]-图论 篇14 欧拉路径,欧拉回路
希望你变强啊
图论算法图论java数据结构c++深度优先
目录判断有向图有欧拉回路判断有向图有欧拉路径如果图G中的一个路径包括每个边恰好一次,则该路径称为欧拉路径(Eulerpath)。(每个点都经过一次就是旅行商问题)预备知识:有向图有欧拉路径:等价于:非0度节点连通,且所有节点入度等于出度(欧拉回路)或有n-2个节点入度等于出度,另外两个节点一个多1一个少1无向图有欧拉路径:等价于:连通图,且没有度为奇数的节点(欧拉回路)或只有两个2个度为奇数的节点
- OpenCV学习(二十一) :计算图像连通分量:connectedComponents(),connectedComponentsWithStats()
Leon_Chen0
OpenCV
OpenCV学习(二十一):计算图像连通分量:connectedComponents(),connectedComponentsWithStats()1、connectedComponents()函数ConnectedComponents即连通体算法用id标注图中每个连通体,将连通体中序号最小的顶点的id作为连通体的id。如果在图G中,任意2个顶点之间都存在路径,那么称G为连通图,否则称该图为非连
- AtCoder ABC E - Min of Restricted Sum 题解
和旋_菾律
算法数据结构
根据输入考虑建图,x、y两个下标的边权为z,建无向图这样我们可以得到一些连通块。根据异或和的性质,对于每一个连通块,我们只要知道其中一个点的点权就能推出所有的点权。最小值考虑贪心,针对当前连通图所有点权二进制数的每一位,假如这一位是1,要想保留更多的1就让别的本位为1的数的这一位是0,于是统计每一位1的个数,若1比0多则起点这一位为1,这样保证了0多。判定可行性:深搜跑一边,如果遍历过了但是点权不
- 考研系列-数据结构第六章:图(上)
Nelson_hehe
#数据结构笔记数据结构图的存储邻接表邻接矩阵十字链表法图的基本操作
目录写在前面一、图的基本概念1.图的定义2.图的种类(1)无向图、有向图(2)简单图、多重图3.顶点的度4.顶点与顶点之间关系描述5.图的连通性(1)连通图、强连通图(2)连通分量、强连通分量(3)生成树、生成森林6.带权图7.几种特殊形态的图(会识别、掌握特性)8.总结9.习题总结(1)选择题(2)简答题二、图的存储1.邻接矩阵(1)存储结构(存储非带权图)(2)邻接矩阵基本性质(3)邻接矩阵存
- java Illegal overloaded getter method with ambiguous type for propert的解决
zwllxs
javajdk
好久不来iteye,今天又来看看,哈哈,今天碰到在编码时,反射中会抛出
Illegal overloaded getter method with ambiguous type for propert这么个东东,从字面意思看,是反射在获取getter时迷惑了,然后回想起java在boolean值在生成getter时,分别有is和getter,也许我们的反射对象中就有is开头的方法迷惑了jdk,
- IT人应当知道的10个行业小内幕
beijingjava
工作互联网
10. 虽然IT业的薪酬比其他很多行业要好,但有公司因此视你为其“佣人”。
尽管IT人士的薪水没有互联网泡沫之前要好,但和其他行业人士比较,IT人的薪资还算好点。在接下的几十年中,科技在商业和社会发展中所占分量会一直增加,所以我们完全有理由相信,IT专业人才的需求量也不会减少。
然而,正因为IT人士的薪水普遍较高,所以有些公司认为给了你这么多钱,就把你看成是公司的“佣人”,拥有你的支配
- java 实现自定义链表
CrazyMizzz
java数据结构
1.链表结构
链表是链式的结构
2.链表的组成
链表是由头节点,中间节点和尾节点组成
节点是由两个部分组成:
1.数据域
2.引用域
3.链表的实现
&nbs
- web项目发布到服务器后图片过一会儿消失
麦田的设计者
struts2上传图片永久保存
作为一名学习了android和j2ee的程序员,我们必须要意识到,客服端和服务器端的交互是很有必要的,比如你用eclipse写了一个web工程,并且发布到了服务器(tomcat)上,这时你在webapps目录下看到了你发布的web工程,你可以打开电脑的浏览器输入http://localhost:8080/工程/路径访问里面的资源。但是,有时你会突然的发现之前用struts2上传的图片
- CodeIgniter框架Cart类 name 不能设置中文的解决方法
IT独行者
CodeIgniterCart框架
今天试用了一下CodeIgniter的Cart类时遇到了个小问题,发现当name的值为中文时,就写入不了session。在这里特别提醒一下。 在CI手册里也有说明,如下:
$data = array(
'id' => 'sku_123ABC',
'qty' => 1,
'
- linux回收站
_wy_
linux回收站
今天一不小心在ubuntu下把一个文件移动到了回收站,我并不想删,手误了。我急忙到Nautilus下的回收站中准备恢复它,但是里面居然什么都没有。 后来我发现这是由于我删文件的地方不在HOME所在的分区,而是在另一个独立的Linux分区下,这是我专门用于开发的分区。而我删除的东东在分区根目录下的.Trash-1000/file目录下,相关的删除信息(删除时间和文件所在
- jquery回到页面顶端
知了ing
htmljquerycss
html代码:
<h1 id="anchor">页面标题</h1>
<div id="container">页面内容</div>
<p><a href="#anchor" class="topLink">回到顶端</a><
- B树、B-树、B+树、B*树
矮蛋蛋
B树
原文地址:
http://www.cnblogs.com/oldhorse/archive/2009/11/16/1604009.html
B树
即二叉搜索树:
1.所有非叶子结点至多拥有两个儿子(Left和Right);
&nb
- 数据库连接池
alafqq
数据库连接池
http://www.cnblogs.com/xdp-gacl/p/4002804.html
@Anthor:孤傲苍狼
数据库连接池
用MySQLv5版本的数据库驱动没有问题,使用MySQLv6和Oracle的数据库驱动时候报如下错误:
java.lang.ClassCastException: $Proxy0 cannot be cast to java.sql.Connec
- java泛型
百合不是茶
java泛型
泛型
在Java SE 1.5之前,没有泛型的情况的下,通过对类型Object的引用来实现参数的“任意化”,任意化的缺点就是要实行强制转换,这种强制转换可能会带来不安全的隐患
泛型的特点:消除强制转换 确保类型安全 向后兼容
简单泛型的定义:
泛型:就是在类中将其模糊化,在创建对象的时候再具体定义
class fan
- javascript闭包[两个小测试例子]
bijian1013
JavaScriptJavaScript
一.程序一
<script>
var name = "The Window";
var Object_a = {
name : "My Object",
getNameFunc : function(){
var that = this;
return function(){
- 探索JUnit4扩展:假设机制(Assumption)
bijian1013
javaAssumptionJUnit单元测试
一.假设机制(Assumption)概述 理想情况下,写测试用例的开发人员可以明确的知道所有导致他们所写的测试用例不通过的地方,但是有的时候,这些导致测试用例不通过的地方并不是很容易的被发现,可能隐藏得很深,从而导致开发人员在写测试用例时很难预测到这些因素,而且往往这些因素并不是开发人员当初设计测试用例时真正目的,
- 【Gson四】范型POJO的反序列化
bit1129
POJO
在下面这个例子中,POJO(Data类)是一个范型类,在Tests中,指定范型类为PieceData,POJO初始化完成后,通过
String str = new Gson().toJson(data);
得到范型化的POJO序列化得到的JSON串,然后将这个JSON串反序列化为POJO
import com.google.gson.Gson;
import java.
- 【Spark八十五】Spark Streaming分析结果落地到MySQL
bit1129
Stream
几点总结:
1. DStream.foreachRDD是一个Output Operation,类似于RDD的action,会触发Job的提交。DStream.foreachRDD是数据落地很常用的方法
2. 获取MySQL Connection的操作应该放在foreachRDD的参数(是一个RDD[T]=>Unit的函数类型),这样,当foreachRDD方法在每个Worker上执行时,
- NGINX + LUA实现复杂的控制
ronin47
nginx lua
安装lua_nginx_module 模块
lua_nginx_module 可以一步步的安装,也可以直接用淘宝的OpenResty
Centos和debian的安装就简单了。。
这里说下freebsd的安装:
fetch http://www.lua.org/ftp/lua-5.1.4.tar.gz
tar zxvf lua-5.1.4.tar.gz
cd lua-5.1.4
ma
- java-递归判断数组是否升序
bylijinnan
java
public class IsAccendListRecursive {
/*递归判断数组是否升序
* if a Integer array is ascending,return true
* use recursion
*/
public static void main(String[] args){
IsAccendListRecursiv
- Netty源码学习-DefaultChannelPipeline2
bylijinnan
javanetty
Netty3的API
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/channel/ChannelPipeline.html
里面提到ChannelPipeline的一个“pitfall”:
如果ChannelPipeline只有一个handler(假设为handlerA)且希望用另一handler(假设为handlerB)
来
- Java工具之JPS
chinrui
java
JPS使用
熟悉Linux的朋友们都知道,Linux下有一个常用的命令叫做ps(Process Status),是用来查看Linux环境下进程信息的。同样的,在Java Virtual Machine里面也提供了类似的工具供广大Java开发人员使用,它就是jps(Java Process Status),它可以用来
- window.print分页打印
ctrain
window
function init() {
var tt = document.getElementById("tt");
var childNodes = tt.childNodes[0].childNodes;
var level = 0;
for (var i = 0; i < childNodes.length; i++) {
- 安装hadoop时 执行jps命令Error occurred during initialization of VM
daizj
jdkhadoopjps
在安装hadoop时,执行JPS出现下面错误
[slave16]
[email protected]:/tmp/hsperfdata_hdfs# jps
Error occurred during initialization of VM
java.lang.Error: Properties init: Could not determine current working
- PHP开发大型项目的一点经验
dcj3sjt126com
PHP重构
一、变量 最好是把所有的变量存储在一个数组中,这样在程序的开发中可以带来很多的方便,特别是当程序很大的时候。变量的命名就当适合自己的习惯,不管是用拼音还是英语,至少应当有一定的意义,以便适合记忆。变量的命名尽量规范化,不要与PHP中的关键字相冲突。 二、函数 PHP自带了很多函数,这给我们程序的编写带来了很多的方便。当然,在大型程序中我们往往自己要定义许多个函数,几十
- android笔记之--向网络发送GET/POST请求参数
dcj3sjt126com
android
使用GET方法发送请求
private static boolean sendGETRequest (String path,
Map<String, String> params) throws Exception{
//发送地http://192.168.100.91:8080/videoServi
- linux复习笔记 之bash shell (3) 通配符
eksliang
linux 通配符linux通配符
转载请出自出处:
http://eksliang.iteye.com/blog/2104387
在bash的操作环境中有一个非常有用的功能,那就是通配符。
下面列出一些常用的通配符,如下表所示 符号 意义 * 万用字符,代表0个到无穷个任意字符 ? 万用字符,代表一定有一个任意字符 [] 代表一定有一个在中括号内的字符。例如:[abcd]代表一定有一个字符,可能是a、b、c
- Android关于短信加密
gqdy365
android
关于Android短信加密功能,我初步了解的如下(只在Android应用层试验):
1、因为Android有短信收发接口,可以调用接口完成短信收发;
发送过程:APP(基于短信应用修改)接受用户输入号码、内容——>APP对短信内容加密——>调用短信发送方法Sm
- asp.net在网站根目录下创建文件夹
hvt
.netC#hovertreeasp.netWeb Forms
假设要在asp.net网站的根目录下建立文件夹hovertree,C#代码如下:
string m_keleyiFolderName = Server.MapPath("/hovertree");
if (Directory.Exists(m_keleyiFolderName))
{
//文件夹已经存在
return;
}
else
{
try
{
D
- 一个合格的程序员应该读过哪些书
justjavac
程序员书籍
编者按:2008年8月4日,StackOverflow 网友 Bert F 发帖提问:哪本最具影响力的书,是每个程序员都应该读的?
“如果能时光倒流,回到过去,作为一个开发人员,你可以告诉自己在职业生涯初期应该读一本, 你会选择哪本书呢?我希望这个书单列表内容丰富,可以涵盖很多东西。”
很多程序员响应,他们在推荐时也写下自己的评语。 以前就有国内网友介绍这个程序员书单,不过都是推荐数
- 单实例实践
跑龙套_az
单例
1、内部类
public class Singleton {
private static class SingletonHolder {
public static Singleton singleton = new Singleton();
}
public Singleton getRes
- PO VO BEAN 理解
q137681467
VODTOpo
PO:
全称是 persistant object持久对象 最形象的理解就是一个PO就是数据库中的一条记录。 好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。
BO:
全称是 business object:业务对象 主要作用是把业务逻辑封装为一个对象。这个对
- 战胜惰性,暗自努力
金笛子
努力
偶然看到一句很贴近生活的话:“别人都在你看不到的地方暗自努力,在你看得到的地方,他们也和你一样显得吊儿郎当,和你一样会抱怨,而只有你自己相信这些都是真的,最后也只有你一人继续不思进取。”很多句子总在不经意中就会戳中一部分人的软肋,我想我们每个人的周围总是有那么些表现得“吊儿郎当”的存在,是否你就真的相信他们如此不思进取,而开始放松了对自己的要求随波逐流呢?
我有个朋友是搞技术的,平时嘻嘻哈哈,以
- NDK/JNI二维数组多维数组传递
wenzongliang
二维数组jniNDK
多维数组和对象数组一样处理,例如二维数组里的每个元素还是一个数组 用jArray表示,直到数组变为一维的,且里面元素为基本类型,去获得一维数组指针。给大家提供个例子。已经测试通过。
Java_cn_wzl_FiveChessView_checkWin( JNIEnv* env,jobject thiz,jobjectArray qizidata)
{
jint i,j;
int s