图像 快速傅里叶变换 及 频率域滤波 java 实现

首先感谢中山大学12级软件学院计算机应用方向和我同班的乔勃大God,以及软件学院副院长、数图seisei朝老师的帮助!马屁还是要拍的o(* ̄▽ ̄*)ブ

//-------------------------------------------------OK 正题---------------------------------------------------------

很多学过数图的小伙伴都经历过傅里叶变换这一坑,如果使用中文书的话错误就更多了。

So,今天小渣我就用java实现一个快速傅里叶变换和频率域的滤波,函数都是纯手写(用来弄懂原理)

废话不多说,先看看频率域滤波的大致步骤:

1、给定一副A*B的图像,对其进行扩充(补0),使其长和宽变为大于或等于自身长度的最小2的整数次幂。

2、对扩充后的图像进行移动中心操作,即乘以(-1)^(x+y)。

3、计算第二步的FFT(利用一维快速傅里叶变换实现二维)【生成一个大小和扩充图像一致的二维复数数组F(u,v)】

4、生成一个频率域的滤波器H(u,v)【注意这个是复数,大小和第三步的结果一样】

5、点乘,令g(u,v)= H(u,v)·F(u,v)

6、对g做快速傅里叶逆变换IFFT

7、对第6步的结果取实部

8、队第7步的结果乘以(-1)^(x+y)再次移动中心。

9、剪裁获得与原图大小一致的结果。


sorry,今天好累,先开个头,把代码放上去,明天继续。

/*   这个文件里包含两个DFT函数,一个是主DFT,在这里完成一个二维图片的
扩充、中心移动、傅里叶变换、滤波(包括滤波器的处理等)、逆变换、取实部、
移回中心等操作并返回一个处理完后的二维图片。另一个DFT是指普通的(慢速)
傅里叶变换,输入一个二维数组、u、v并返回一个值F(u、v)。
    除此之外,本文件还提供:
·get2PowerEdge:用来计算一个图像边的最小2的整数次幂扩展;
·showFouriedImage:返回一个傅里叶变换后的频谱图(取模、取log再量化)
·fft:一维快速傅里叶变换
·ifft:一维快速傅里叶逆变换
·convolve:一维卷积。*/


import java.awt.Image;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.lang.reflect.Array;
import java.util.Scanner;
import java.lang.Math;

import javax.imageio.ImageIO;

public class ImageFourier {
	
	public static void main (String[] args) throws IOException {
		BufferedImage srcimg = ImageIO.read(new File("./84.png"));
		BufferedImage destimg = DFT(srcimg);
		ImageIO.write(destimg, "png", new File("G:/pic/NormalDFT84.png"));
		System.out.println("finished!");
	}
	
	public static BufferedImage DFT(BufferedImage img) throws IOException {
	
		int w = img.getWidth(null);
		int h = img.getHeight(null);
		int m = get2PowerEdge(w); // 获得2的整数次幂
//		System.out.println(m);
		int n = get2PowerEdge(h);
//		System.out.println(n);
		int[][] last = new int[m][n];
		Complex[][] next = new Complex[m][n];
		int pixel, alpha = -1, newred, newgreen, newblue, newrgb;
		
		BufferedImage destimg = new BufferedImage(w, h, BufferedImage.TYPE_INT_ARGB);
//----------------------------------------------------------------------		
		//  first: Image Padding and move it to center 填充图像至2的整数次幂并乘以(-1)^(x+y)
		//  use 2-D array last to store
		for (int i = 0; i < m; i++) {
			for (int j = 0; j < n; j++) {
				if (i < w && j < h) {
					pixel = img.getRGB(i, j);
					if ((i+j)%2==0) {
						newred = pixel&0x00ff0000>>16;
					}
					else {
						newred = -(pixel&0x00ff0000>>16);
					}
					last[i][j] = newred;
				}
				else {
					last[i][j] = 0;
				}
			}
		}
		
//----------------------------------------------------------------------
		// second: Fourier Transform 离散傅里叶变换
		// u-width v-height x-width y-height

		//------------Normal-DFT-------------
//			for (int u = 0; u < m; u++){
//				for (int v = 0; v >16;
				newred = last[i][j];
				if ((i+j)%2!=0)
					newred = -newred;
			//	newred = srcred-newred;				
				newblue = newred; // 先写这个 ,如果先改变newred的值,newblue也会变成改过后的newred!
				newgreen = newred << 8; // 这个也一样,反正不能放到newred改变自己之前!
				newred = newred << 16;
				newrgb = newalpha | newred | newgreen | newblue;
				destimg.setRGB(i, j, newrgb);
//				System.out.println("R: "+newred+"---G: "+newgreen+"---B: "+newblue);
			}
		}
//----------------------------------------------------------------------		
		return destimg;
	}

//---------------------other functions--------------------------
	
	// 根据图像的长获得2的整数次幂
	public static int get2PowerEdge(int e) {
		if (e == 1)
			return 1;
		int cur = 1;
		while(true) {
			if (e > cur && e <= 2 * cur)
				return 2*cur;
			else
				cur *= 2;
		}
	}
	
	// 返回傅里叶频谱图
	public static BufferedImage showFourierImage (Complex[][] f) {
		int w = f.length;
		int h = f[0].length;
		double max = 0;
		double min = 0;
		BufferedImage destimg = new BufferedImage(w, h, BufferedImage.TYPE_INT_ARGB);
		//-------------------First get abs(取模)--------------------------
		double[][] abs = new double[w][h];
		for (int i = 0; i < w; i++) {
			for (int j = 0; j < h; j++) {
				abs[i][j] = f[i][j].abs();
//				System.out.println(f[i][j].getR()+"  "+f[i][j].getI());
			}
		}		
		//-------------------Second get log(取log + 1)-------------------
		for (int i = 0; i < w; i++) {
			for (int j = 0; j < h; j++) {
				abs[i][j] = Math.log(abs[i][j]+1);
			}
		}		
		//-------------------Third quantization(量化)---------------------
		max = abs[0][0];
		min = abs[0][0];
		for (int i = 0; i < w; i++) {
			for (int j = 0; j < h; j++) {
				if (abs[i][j] > max)
					max = abs[i][j];
				if (abs[i][j] < min)
					min = abs[i][j];
			}
		}
		int level = 255;
		double interval = (max - min) / level;
		for (int i = 0; i < w; i++) {
			for (int j = 0; j < h; j++) {
				for (int k = 0; k <= level; k++) {
					if (abs[i][j] >= k * interval && abs[i][j] < (k + 1) * interval) {
						abs[i][j] = (k * interval / (max - min)) * level;
						break;
					}
				}
			}
		}
		//-------------------Fourth setImage----------------------------
		int newalpha = (-1) << 24;
		int newred;
		int newblue;
		int newgreen;
		int newrgb;
		for (int i = 0; i < w; i++) {
			for (int j = 0; j < h; j++) {
				newred = (int)abs[i][j] << 16;
				newgreen = (int)abs[i][j] << 8;
				newblue = (int)abs[i][j];
				newrgb = newalpha | newred | newgreen | newblue;
				destimg.setRGB(i, j, newrgb);
			}	
		}
		return destimg;
	}
	
	// normal 2-D DFT
	public static Complex DFT(int[][] f, int u, int v) {
		int M = f.length;
		int N = f[0].length;
		Complex c = new Complex(0, 0);
		for (int x = 0; x < M; x++) {
			for (int y = 0; y < N; y++) {
				Complex temp = new Complex(0, -2*Math.PI*(u*x/M+v*y/N));
				c = c.plus(temp.exp().times(f[x][y]));
			}
		}
		return c;
	}
	
	// 快速一维傅里叶变换
	public static Complex[] fft (Complex[] x) { //传入的全都是206
		int N = x.length;
//		if (N == 256) {
//			for (int i = 0; i < N; i++)
//			System.out.println(i+"---"+x[i].getR()+"  "+x[i].getI());
//		}
//		System.out.println(N);
		
		// base case
		if (N == 1) {
//			System.out.println(x[0].getR()+"  "+x[0].getI()); // !!!!ERROR
//			return new Complex[] {x[0]};
			return x;
		}
		
		// radix 2 Cooley-Turkey FFT
		if (N % 2 != 0) {
			throw new RuntimeException("N is not a power of 2");
		}
		
		// fft of even terms
		Complex[] even = new Complex[N/2];
		for (int k = 0; k < N/2; k++) {
			even[k] = x[2*k];
		}
		Complex[] q = fft(even);
		
		// fft of odd terms
		Complex[] odd = new Complex[N/2];
		for (int k = 0; k < N/2; k++) {
			odd[k] = x[2*k+1]; //DEBUG  之前这里忘记+1  差点搞死我
		}
		Complex[] r = fft(odd);
		
		// combine
		Complex[] y = new Complex[N];
		for (int k = 0; k < N/2; k++) {
			double kth = -2 * k * Math.PI / N;
			Complex wk = new Complex(Math.cos(kth), Math.sin(kth)); // all small number not 0
			y[k] = q[k].plus(wk.times(r[k]));
			y[k + N/2] = q[k].minus(wk.times(r[k]));
//			System.out.println("wk: "+N+"---"+wk.getR()+"  "+wk.getI());
//			System.out.println("q[k]: "+N+"---"+q[k].getR()+"  "+q[k].getI());
//			System.out.println("r[k]: "+N+"---"+r[k].getR()+"  "+r[k].getI());
//			System.out.println("wk.times(r[k]): "+N+"---"+wk.times(r[k]).getR()+"  "+wk.times(r[k]).getI());
		}
		
		return y;
	}
	
	// 快速一维傅里叶逆变换
	public static Complex[] ifft(Complex[] x) {
		int N = x.length;
		Complex[] y = new Complex[N];
		
		// take conjugate
		for (int i = 0; i < N; i++) {
			y[i] = x[i].conjugate();
		}
		
		// compute forward fft
		y = fft(y);
		
		// take conguate again
		for (int i = 0; i < N; i++) {
			y[i] = y[i].conjugate();
		}
		
		// divide by N
		for (int i = 0; i < N; i++) {
			y[i] = y[i].times(1.0/N);
		}
		
		return y;
	}
	
	// 快速一维卷积
	public Complex[] convolve(Complex[] x, Complex[] y) {
		
		if (x.length != y.length) {
			throw new RuntimeException("Dimension don't agree");
		}
		
		int N = x.length;
		
		// compute fft of each sequence;
		Complex[] a = fft(x);
		Complex[] b = fft(y);
		
		// point-wise multiply
		Complex[] c = new Complex[N];
		for (int i = 0; i < N; i++) {
			c[i] = a[i].times(b[i]);
		}
		
		// compute inverse FFT
//		return ifft(c);
		return c;
	}
}
// complex inner class
	public class Complex {
		private final double r;
		private final double i;
		
		public Complex (double r, double i) {
			this.r = r;
			this.i = i;
		}
		
		public double abs() { // return sqrt(r^2 +i^2)
			return Math.hypot(r, i);
		}
		
		public double phase() {
			return Math.atan2(i, r);
		}
		
		public Complex plus (Complex c) {
			return new Complex (this.r + c.r, this.i + c.i);
		}
		
		public Complex minus (Complex c) {
			return new Complex (this.r - c.r, this.i - c.i);
		}
		
		public Complex times (Complex c) {
			return new Complex (this.r * c.r - this.i * c.i,
					this.r * c.i + this.i * c.r);
		}
		
		public Complex times (double d) {
			return new Complex (this.r * d, this.i * d);
		}
		
		public Complex conjugate() {
			return new Complex (r, -i);
		}
		
		public double getR () {
			return r;
		}
		
		public double getI () {
			return i;
		}
		
		public Complex exp() {
			return new Complex(Math.exp(r) * Math.cos(i),
					Math.exp(r) * Math.sin(i));
		}
	}



你可能感兴趣的:(数字图像处理)