- 内点法在线性规划中的应用:从理论到实践
ningaiiii
机器学习与深度学习python算法
内点法在线性规划中的应用:从理论到实践1.引言内点法(InteriorPointMethod)是求解线性规划问题的另一个重要算法。与单纯形法沿着可行域边界移动不同,内点法通过在可行域内部直接逼近最优解。这种方法最早由Karmarkar在1984年提出,为大规模优化问题提供了一个多项式时间的解决方案。本文将深入探讨内点法的原理和实现,并通过实例展示其在实际优化问题中的应用。2.理论基础2.1线性规划
- 数学与信息系统管理:IT架构的数学优化
AI天才研究院
计算ChatGPTDeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
数学与信息系统管理:IT架构的数学优化关键词:数学优化、信息系统管理、IT架构、线性规划、非线性规划、动态规划、启发式算法摘要:本文深入探讨了数学优化在信息系统管理中的应用及其重要性。首先,回顾了信息系统管理的发展历程和数学优化方法的基本概念,接着介绍了数学优化方法在信息系统管理中的实际应用和面临的挑战。本文通过逐步分析,详细讲解了基础数学知识、线性规划、非线性规划、动态规划和启发式算法等数学优化
- python实现线性规划 数学建模 代替matlab
Leowner
python数学建模python数学建模
要解决的问题如图所示importnumpyasnpfromscipyimportoptimizez=np.array([2,3,1])a=np.array([
- 数学建模与MATLAB实现:线性规划
青橘MATLAB学习
数学建模matlab开发语言
线性规划是数学建模中常用的一种优化方法,广泛应用于资源分配、生产计划、投资决策等领域。本文将介绍线性规划的基本概念,并重点讲解如何使用MATLAB求解线性规划问题,特别是对MATLAB中的linprog函数进行详细说明。一、线性规划的基本概念线性规划(LinearProgramming,LP)是数学规划中的一种,其目标函数和约束条件均为线性函数。线性规划问题的标准形式如下:minimizef(x)
- 简单优化模型实例(1)
补三补四
数学建模#LINGO算法数学建模
lingo实例简单线性规划简单线性规划是数学中线性规划的一种简化形式,主要用于解决具有两个决策变量的线性目标函数在一组线性约束条件下的最优化问题。目标函数:是一个关于决策变量的线性函数,通常表示z=ax+by的形式,其中a和b是常数。目标函数需要在约束条件下达到最大值或最小值。约束条件:是一组关于决策变量的线性不等式或等式。这些约束条件限制了决策变量的取值范围,使得问题的解在一定的可行域内。例如x
- 数学建模、运筹学之非线性规划
AgentSmart
算法学习算法动态规划线性代数线性规划
数学建模、运筹学之非线性规划一、最优化问题理论体系二、梯度下降法——无约束非线性规划三、牛顿法——无约束非线性规划四、只包含等值约束的拉格朗日乘子法五、不等值约束非线性规划与KKT条件一、最优化问题理论体系最优化问题旨在寻找全局最优值(或为最大值,或为最小值)。最优化问题一般可以分为两个部分:目标函数与约束条件。该问题的进一步细分也是根据这两部分的差异。最优化问题根据变量的取值范围不同可以划分为一
- python数学建模--非线性规划
diudiu_aaa
数学建模python算法
1.从线性规划到非线性规划本系列的开篇我们介绍了线性规划(LinearProgramming)并延伸到整数规划、0-1规划,以及相对复杂的固定费用问题、选址问题。这些问题的共同特点是,目标函数与约束条件都是线性函数。如果目标函数或约束条件中包含非线性函数,则是非线性规划。通常,非线性问题都比线性问题复杂得多,困难得多,非线性规划也是这样。非线性规划没有统一的通用方法、算法来解决,各种方法都有特定的
- 数学建模笔记—— 非线性规划
liangbm3
数学建模笔记数学建模笔记pythonmatlab非线性规划算法学习优化问题
数学建模笔记——非线性规划非线性规划1.模型原理1.1非线性规划的标准型1.2非线性规划求解的Matlab函数2.典型例题3.matlab代码求解3.1例1一个简单示例3.2例2选址问题1.第一问线性规划2.第二问非线性规划非线性规划非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈(H.W.Kuhn)和托克(A.W.T
- ChatGPT-4o:多领域创新应用的智能助手
洋葱蚯蚓
pythonAI数学建模人工智能
ChatGPT-4o:多领域创新应用的智能助手前言1.数学建模:ChatGPT-4o的精确计算1.1专业术语简介1.2代码示例:线性规划问题问题描述代码实现运行结果2.AI绘画:ChatGPT-4o的视觉创造力2.1角色设计示例:火焰魔法师角色描述MJ提示词图片生成2.2火焰魔法师3.海报设计:ChatGPT-4o的创意展现3.1妇女节海报设计3.2保护环境海报设计结论结语前言 在当今这个信息爆
- 数学建模强化宝典(2)linprog
IT 青年
建模强化栈数学建模编程linprog
一、介绍linprog是MATLAB中用于解决线性规划问题的函数。线性规划是一种优化方法,它尝试在满足一组线性等式或不等式约束的条件下,找到一个线性目标函数的最大值或最小值。linprog函数适用于求解形如以下问题的线性规划问题:minimizecTxsubjecttoAx≤bAeqx=beqlb≤x≤ub其中:c是目标函数的系数向量。x是优化变量向量。A和b定义了不等式约束Ax≤b。Aeq和be
- MATLAB智能优化算法-学习笔记(1)——遗传算法求解0-1背包问题【过程+代码】
郭十六弟
算法matlab学习智能优化算法算法思想遗传算法求解0-1背包问题
一、问题描述(1)数学模型(2)模型总结目标函数:最大化背包中的总价值Z。约束条件:确保背包中的物品总重量不超过容量W。决策变量:每个物品是否放入背包,用0或1表示。这个数学模型是一个典型的0-1整数线性规划问题。由于其NP完全性,当问题规模较大时,求解此问题通常需要使用启发式算法(如遗传算法、动态规划、分支定界法等)来找到近似最优解。(3)实例讲解:0-1背包问题模型手动求解过程在0-1背包问题
- python通过Gurobi求解线性规划
vibag
数学建模python算法
文章目录GurobiGurobi中主要的变量类型Gurobi使用基本步骤求解线性规划模型代码实现GurobiGurobi是一款强大的商业数学规划求解器,用于解决线性规划(LP)、整数规划(IP)、混合整数规划(MIP)、二次规划(QP)、非线性规划(NLP)等各种优化问题。它具有高效的求解算法、丰富的功能和友好的用户界面,被广泛应用于学术界和工业界。Gurobi采用了最先进的优化算法和技术,具有出
- 数学建模(优化与控制)
菜鸡中的奋斗鸡→挣扎鸡
数学建模
入门到精通(持续更新):1.线性规划,整数规划,0-1规划(优化与控制)线性规划:整数规划:0-1规划:importpulp #导入PuLP库函数#1.定义一个规划问题MyProbLP=pulp.LpProblem("LPProbDemo1",sense=pulp.LpMaximize)'''pulp.LpProblem是定义问题的构造函数。"LPProbDemo1"是用户定义的问题名(用于输出信
- 果西笔记 | 《管理学》第六章【13/100】
夏果西_Faye
决策是个复杂过程,并非只是以慎重选择为单主体的行为活动。回溯决策理论很有意思,跟人习惯寻找事实依据来验证自我的认知与判断,一个道理。也类似询问他人意见时,内心其实早已有答案。直觉比想象中靠谱,没想到吧~数学无用论该傻眼了,线性规划图解代数还有重要的概率,全都妥妥用上。
- Python cvxpy 安装报错问题
seeseaXi
python开发语言线性代数
学习数学建模的过程中,在线性规划以及非线性规划的章节中,经常会出现要使用cvxpy.solvers模块求解的模型程序,而python当中是没有自带cvxpy这个库的,这意味着我们需要自行安装库。根据网络资料的查询,我得知了:安装cvxpy需要先安装numpy,mkl,scipy,cvxopt,scs,ecos,osqp这几个包至于安装方法,则是通过cmd命令窗口用pip以此安装即可pipinsta
- python零散知识点
#self-discipline#
pythonpython
1.缩进问题:’‘’字符串‘’‘也要和函数运行代码缩进格式保持一致2.cvxpy(线性规划问题的使用)来自pycharm给出的解释:混合整数程序在混合整数程序中,某些变量被限制为布尔值(即0或1)或整数值。您可以通过创建具有只有布尔值或整数值条目的属性的变量来构造混合整数程序:Createsa10-vectorconstrainedtohavebooleanvaluedentries.x=cp.V
- Second-Order Cone Programming(SOCP) 二阶锥规划
Bonennult
凸优化
个人博客Glooow,欢迎各位老师来踩踩文章目录1.二阶锥1.1二阶锥定义1.2二阶锥约束2.优化问题建模3.类似问题转化3.1二次规划3.2随机线性规划4.问题求解1.二阶锥1.1二阶锥定义在此之前,先给出二阶锥的定义。在kkk维空间中二阶锥(Second-ordercone)的定义为Ck={[ut]∣u∈Rk−1,t∈R,∥u∥≤t}\mathcal{C}_{k}=\left\{\left[\
- 《生产调度优化》专栏导读
Lins号丹
生产调度优化生产调度优化
文章分类生产调度优化问题入门相关问题求解调度问题求解效率探讨相关论文解读生产调度优化问题入门文章包含重点简述生产车间调度优化问题两种常用的FJSP模型解析FJSP问题的标准测试数据集的Python代码解析FJSP标准测试数据代码相关问题求解文章求解器问题类型【作业车间调度JSP】通过python调用PuLP线性规划库求解PuLP(开源)作业车间调度JSP【作业车间调度JSP】通过PuLP调用COP
- 混合整数线性规划MILP问题中增添约束的影响
Lins号丹
数学建模数学规划MILP
在混合整数线性规划问题中,我们往往会通过添加约束来限制问题的可行空间,但是约束的添加对模型求解会产生多方面的影响,这取决于具体的问题和模型类型,以下是一些可能造成的影响:约束不起作用,即新增的约束对当前问题的解空间并不特别的改变,这是由于添加的约束没有比其他约束或者其他约束的线性叠加更加有效,要么是过于松的约束,要么是冗余约束,这一般在求解器预处理阶段会被简化;例如:在已知x,y≥0x,y\geq
- 《数学建模》专栏导读
Lins号丹
数学建模数学建模
文章分类相关概念入门快速建模相关混合整数线性规划(MILP)加速技巧数值问题探讨相关问题解决技巧相关概念入门文章相关概念离散优化模型的松弛模型线性松弛问题混合整数线性规划MILP问题中增添约束的影响约束的影响快速建模相关文章求解器涉及步骤利用OR-Tools多样的约束函数快速建模详解CP-SAT(谷歌OR-Tools)快速建立特殊约束OR-Tools约束通过OnlyEnforceIf方法快速建立分
- 运筹学的第一课:单纯形法
ordinary_brony
研究生课堂学习笔记算法经验分享其他
文章目录导读单纯形法简介单纯形法的步骤简介单纯形法的一些说明决策变量基变量工艺常数右端常数空白处θ\thetaθ检验数把其中的一些部分组合起来约束方程典则形式计算步骤判断条件(一)出基和进基矩阵变换判断条件(二)写出结果总结导读运筹学第一课会给你讲线性规划,也就是从初中以来我们拿多元一次方程组做的“旅游叫车问题”、“投资问题”等等。相信在这个时候,每个人的第一印象是:我感觉我行了。然后老师就开始讲
- 巴尔加瓦算法图解【完结】:算法运用(下)
Ashleyxxihf
巴尔加瓦算法图解【完结】算法数据库系统开发语言python
目录布隆过滤器HyperLogLogSHA算法比较文件检查密码Diffie-Hellman密钥交换线性规划结语(完结)布隆过滤器在元素很多的情况下,判断一个元素是否在集合中可以使用布隆过滤器。布隆过滤器(BloomFilter)是1970年由布隆提出的,是一种非常节省空间的概率数据结构,运行速度快,占用内存小,但是有一定的误判率且无法删除元素。它实际上是一个很长的二进制向量和一系列随机映射函数组成
- 分别用线性规划和动态规划求解打家劫舍问题(力扣198)
恩培多克勒的浑天仪
动态规划leetcode算法线性规划
写在前面:1.本人是只挣扎在数模海洋的小可怜,最近同时学线性规划和动态规划,于是就有了这篇博客2.编程使用matlab3.动态规划解法参考数学建模清风动态规划课程https://www.bilibili.com/video/BV1tp4y167c5打家劫舍问题描述:你是一个小偷,现在有一排相邻的房屋等着你去偷窃。这些房子装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警
- 拉格朗日对偶方法求解线性规划
高堂明镜悲白发
算法线性规划
文章目录1线性规划标准形式2构建拉格朗日函数3构建对偶函数4.构建对偶问题5.求解对偶问题6.获得原始问题的最优解1线性规划标准形式让我们考虑一个简单的线性规划问题,并写成标准形式:Minimizef(x1,x2)=2x1+3x2Subjecttog1(x1,x2)=x1+x2−3≤0g2(x1,x2)=−x1+2x2−4≤0\begin{align*}\text{Minimize}\quad&f
- 线性规划计算工具Lingo
赤沙咀菜虚坤
教程:https://wenku.baidu.com/view/b108344e1a37f111f0855b5e.htmlhttps://wenku.baidu.com/view/a55bf6310b4c2e3f5727634e.html编译(Slove)快捷键:ctrl+U返回编码区(Sendtoback)1、按ctrl+鼠标中键滑动控制字体大小2、分号结尾3、空格无影响,大小写不区分4、乘号*
- 线性规划中的对偶理论与Farkas引理及应用
ariesjzj
算法线性规划对偶理论Farkas引理优化理论
对偶(Duality)理论与Farkas引理是线性规划中非常重要的部分,有着广泛的应用。本文聊一下关于它们的一些理解。文章不重在理论推导,因为任何一本关于优化的书基本都会有单独的章节来阐述相关的证明。以下先分别介绍Duality理论与Farkas引理,再说说它们的联系。Duality理论对偶理论主要由vonNeumann,Gale,Kuhn和Tucker提出。对偶不局限于线性规划。借用【1】p21
- 数学建模 - 线性规划入门:Gurobi + python
Terry_trans
数学建模数学建模python
在工程管理、经济管理、科学研究、军事作战训练及日常生产生活等众多领域中,人们常常会遇到各种优化问题。例如,在生产经营中,我们总是希望制定最优的生产计划,充分利用已有的人力、物力资源,获得最大的经济效益;在运输问题中,我们总是希望设计最优的运输方案,在完成运输任务的前提下,力求运输成本最小等。针对优化问题的数学建模也是数学建模竞赛中一类比较常见的问题,这样的问题常常可以使用数学规划模型进行研究。数学
- 数建--LINGO软件介绍
byzqbgm
数模经验分享其他
LINGO软件介绍一、LINGO基本操作LINGO初印象LINGO窗口LINGO工具栏LINGO模型文件LINGO的运算符算术运算符:用于数与数之间的数学运算(前三个无前面的/)/+/-/*/^(求幂)关系运算符:表示“数与数之间”的大小关系。=)简单程序编写-程序model:title求解线性规划max=2*x1+3*x2;2*x1+x2150.001);!集合元素循坏函数sets;a/1..1
- c语言程序ising算法,算法及编程语言 - 声振论坛 - 振动,动力学,声学,信号处理,故障诊断 - Powered by Discuz!...
什么斯坦
c语言程序ising算法
给一下该书的详细信息吧《运筹学基础》作者:张莹出版社:清华大学出版社出版日期:版次:ISBN:730201669页数:311开本:16开包装:平装原价:¥24.0本书包括运筹学中最基本、应用最广泛的七个部分:线性规划、整数规划、目标规划、非线性规划、动态规划、图与网络分析、决策分析。其中以线性规划、非线性规划为重点。全书七部分共详细介绍了50余种实用算法,配有近百个不同类型、不同解法的例题,还有结
- 运筹学——线性规划
枠成
运筹学数学建模其他
仅供自学使用,各位观众自行参考Reference:中国大学mooc管理运筹学韩伯棠https://wenku.baidu.com/view/2e7891961a37f111f1855b46.html#https://zhuanlan.zhihu.com/p/104697552目录线性规划步骤:主要应用:单纯性法求目标函数值最小的线性规划问题解的最终结果情况单纯形法的灵敏度分析python求解线性规
- eclipse maven
IXHONG
eclipse
eclipse中使用maven插件的时候,运行run as maven build的时候报错
-Dmaven.multiModuleProjectDirectory system propery is not set. Check $M2_HOME environment variable and mvn script match.
可以设一个环境变量M2_HOME指
- timer cancel方法的一个小实例
alleni123
多线程timer
package com.lj.timer;
import java.util.Date;
import java.util.Timer;
import java.util.TimerTask;
public class MyTimer extends TimerTask
{
private int a;
private Timer timer;
pub
- MySQL数据库在Linux下的安装
ducklsl
mysql
1.建好一个专门放置MySQL的目录
/mysql/db数据库目录
/mysql/data数据库数据文件目录
2.配置用户,添加专门的MySQL管理用户
>groupadd mysql ----添加用户组
>useradd -g mysql mysql ----在mysql用户组中添加一个mysql用户
3.配置,生成并安装MySQL
>cmake -D
- spring------>>cvc-elt.1: Cannot find the declaration of element
Array_06
springbean
将--------
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3
- maven发布第三方jar的一些问题
cugfy
maven
maven中发布 第三方jar到nexus仓库使用的是 deploy:deploy-file命令
有许多参数,具体可查看
http://maven.apache.org/plugins/maven-deploy-plugin/deploy-file-mojo.html
以下是一个例子:
mvn deploy:deploy-file -DgroupId=xpp3
- MYSQL下载及安装
357029540
mysql
好久没有去安装过MYSQL,今天自己在安装完MYSQL过后用navicat for mysql去厕测试链接的时候出现了10061的问题,因为的的MYSQL是最新版本为5.6.24,所以下载的文件夹里没有my.ini文件,所以在网上找了很多方法还是没有找到怎么解决问题,最后看到了一篇百度经验里有这个的介绍,按照其步骤也完成了安装,在这里给大家分享下这个链接的地址
- ios TableView cell的布局
张亚雄
tableview
cell.imageView.image = [UIImage imageNamed:[imageArray objectAtIndex:[indexPath row]]];
CGSize itemSize = CGSizeMake(60, 50);
&nbs
- Java编码转义
adminjun
java编码转义
import java.io.UnsupportedEncodingException;
/**
* 转换字符串的编码
*/
public class ChangeCharset {
/** 7位ASCII字符,也叫作ISO646-US、Unicode字符集的基本拉丁块 */
public static final Strin
- Tomcat 配置和spring
aijuans
spring
简介
Tomcat启动时,先找系统变量CATALINA_BASE,如果没有,则找CATALINA_HOME。然后找这个变量所指的目录下的conf文件夹,从中读取配置文件。最重要的配置文件:server.xml 。要配置tomcat,基本上了解server.xml,context.xml和web.xml。
Server.xml -- tomcat主
- Java打印当前目录下的所有子目录和文件
ayaoxinchao
递归File
其实这个没啥技术含量,大湿们不要操笑哦,只是做一个简单的记录,简单用了一下递归算法。
import java.io.File;
/**
* @author Perlin
* @date 2014-6-30
*/
public class PrintDirectory {
public static void printDirectory(File f
- linux安装mysql出现libs报冲突解决
BigBird2012
linux
linux安装mysql出现libs报冲突解决
安装mysql出现
file /usr/share/mysql/ukrainian/errmsg.sys from install of MySQL-server-5.5.33-1.linux2.6.i386 conflicts with file from package mysql-libs-5.1.61-4.el6.i686
- jedis连接池使用实例
bijian1013
redisjedis连接池jedis
实例代码:
package com.bijian.study;
import java.util.ArrayList;
import java.util.List;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPoo
- 关于朋友
bingyingao
朋友兴趣爱好维持
成为朋友的必要条件:
志相同,道不合,可以成为朋友。譬如马云、周星驰一个是商人,一个是影星,可谓道不同,但都很有梦想,都要在各自领域里做到最好,当他们遇到一起,互相欣赏,可以畅谈两个小时。
志不同,道相合,也可以成为朋友。譬如有时候看到两个一个成绩很好每次考试争做第一,一个成绩很差的同学是好朋友。他们志向不相同,但他
- 【Spark七十九】Spark RDD API一
bit1129
spark
aggregate
package spark.examples.rddapi
import org.apache.spark.{SparkConf, SparkContext}
//测试RDD的aggregate方法
object AggregateTest {
def main(args: Array[String]) {
val conf = new Spar
- ktap 0.1 released
bookjovi
kerneltracing
Dear,
I'm pleased to announce that ktap release v0.1, this is the first official
release of ktap project, it is expected that this release is not fully
functional or very stable and we welcome bu
- 能保存Properties文件注释的Properties工具类
BrokenDreams
properties
今天遇到一个小需求:由于java.util.Properties读取属性文件时会忽略注释,当写回去的时候,注释都没了。恰好一个项目中的配置文件会在部署后被某个Java程序修改一下,但修改了之后注释全没了,可能会给以后的参数调整带来困难。所以要解决这个问题。
&nb
- 读《研磨设计模式》-代码笔记-外观模式-Facade
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 百度百科的定义:
* Facade(外观)模式为子系统中的各类(或结构与方法)提供一个简明一致的界面,
* 隐藏子系统的复杂性,使子系统更加容易使用。他是为子系统中的一组接口所提供的一个一致的界面
*
* 可简单地
- After Effects教程收集
cherishLC
After Effects
1、中文入门
http://study.163.com/course/courseMain.htm?courseId=730009
2、videocopilot英文入门教程(中文字幕)
http://www.youku.com/playlist_show/id_17893193.html
英文原址:
http://www.videocopilot.net/basic/
素
- Linux Apache 安装过程
crabdave
apache
Linux Apache 安装过程
下载新版本:
apr-1.4.2.tar.gz(下载网站:http://apr.apache.org/download.cgi)
apr-util-1.3.9.tar.gz(下载网站:http://apr.apache.org/download.cgi)
httpd-2.2.15.tar.gz(下载网站:http://httpd.apac
- Shell学习 之 变量赋值和引用
daizj
shell变量引用赋值
本文转自:http://www.cnblogs.com/papam/articles/1548679.html
Shell编程中,使用变量无需事先声明,同时变量名的命名须遵循如下规则:
首个字符必须为字母(a-z,A-Z)
中间不能有空格,可以使用下划线(_)
不能使用标点符号
不能使用bash里的关键字(可用help命令查看保留关键字)
需要给变量赋值时,可以这么写:
- Java SE 第一讲(Java SE入门、JDK的下载与安装、第一个Java程序、Java程序的编译与执行)
dcj3sjt126com
javajdk
Java SE 第一讲:
Java SE:Java Standard Edition
Java ME: Java Mobile Edition
Java EE:Java Enterprise Edition
Java是由Sun公司推出的(今年初被Oracle公司收购)。
收购价格:74亿美金
J2SE、J2ME、J2EE
JDK:Java Development
- YII给用户登录加上验证码
dcj3sjt126com
yii
1、在SiteController中添加如下代码:
/**
* Declares class-based actions.
*/
public function actions() {
return array(
// captcha action renders the CAPTCHA image displ
- Lucene使用说明
dyy_gusi
Lucenesearch分词器
Lucene使用说明
1、lucene简介
1.1、什么是lucene
Lucene是一个全文搜索框架,而不是应用产品。因此它并不像baidu或者googleDesktop那种拿来就能用,它只是提供了一种工具让你能实现这些产品和功能。
1.2、lucene能做什么
要回答这个问题,先要了解lucene的本质。实际
- 学习编程并不难,做到以下几点即可!
gcq511120594
数据结构编程算法
不论你是想自己设计游戏,还是开发iPhone或安卓手机上的应用,还是仅仅为了娱乐,学习编程语言都是一条必经之路。编程语言种类繁多,用途各 异,然而一旦掌握其中之一,其他的也就迎刃而解。作为初学者,你可能要先从Java或HTML开始学,一旦掌握了一门编程语言,你就发挥无穷的想象,开发 各种神奇的软件啦。
1、确定目标
学习编程语言既充满乐趣,又充满挑战。有些花费多年时间学习一门编程语言的大学生到
- Java面试十问之三:Java与C++内存回收机制的差别
HNUlanwei
javaC++finalize()堆栈内存回收
大家知道, Java 除了那 8 种基本类型以外,其他都是对象类型(又称为引用类型)的数据。 JVM 会把程序创建的对象存放在堆空间中,那什么又是堆空间呢?其实,堆( Heap)是一个运行时的数据存储区,从它可以分配大小各异的空间。一般,运行时的数据存储区有堆( Heap)和堆栈( Stack),所以要先看它们里面可以分配哪些类型的对象实体,然后才知道如何均衡使用这两种存储区。一般来说,栈中存放的
- 第二章 Nginx+Lua开发入门
jinnianshilongnian
nginxlua
Nginx入门
本文目的是学习Nginx+Lua开发,对于Nginx基本知识可以参考如下文章:
nginx启动、关闭、重启
http://www.cnblogs.com/derekchen/archive/2011/02/17/1957209.html
agentzh 的 Nginx 教程
http://openresty.org/download/agentzh-nginx-tutor
- MongoDB windows安装 基本命令
liyonghui160com
windows安装
安装目录:
D:\MongoDB\
新建目录
D:\MongoDB\data\db
4.启动进城:
cd D:\MongoDB\bin
mongod -dbpath D:\MongoDB\data\db
&n
- Linux下通过源码编译安装程序
pda158
linux
一、程序的组成部分 Linux下程序大都是由以下几部分组成: 二进制文件:也就是可以运行的程序文件 库文件:就是通常我们见到的lib目录下的文件 配置文件:这个不必多说,都知道 帮助文档:通常是我们在linux下用man命令查看的命令的文档
二、linux下程序的存放目录 linux程序的存放目录大致有三个地方: /etc, /b
- WEB开发编程的职业生涯4个阶段
shw3588
编程Web工作生活
觉得自己什么都会
2007年从学校毕业,凭借自己原创的ASP毕业设计,以为自己很厉害似的,信心满满去东莞找工作,找面试成功率确实很高,只是工资不高,但依旧无法磨灭那过分的自信,那时候什么考勤系统、什么OA系统、什么ERP,什么都觉得有信心,这样的生涯大概持续了约一年。
根本不是自己想的那样
2008年开始接触很多工作相关的东西,发现太多东西自己根本不会,都需要去学,不管是asp还是js,
- 遭遇jsonp同域下变作post请求的坑
vb2005xu
jsonp同域post
今天迁移一个站点时遇到一个坑爹问题,同一个jsonp接口在跨域时都能调用成功,但是在同域下调用虽然成功,但是数据却有问题. 此处贴出我的后端代码片段
$mi_id = htmlspecialchars(trim($_GET['mi_id ']));
$mi_cv = htmlspecialchars(trim($_GET['mi_cv ']));
贴出我前端代码片段:
$.aj