python数据分析(十六)

# -*- coding: utf-8 -*-

import numpy as np

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import precision_recall_curve

from sklearn.metrics import classification_report

from sklearn.naive_bayes import BernoulliNB

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.cross_validation import train_test_split

import matplotlib.pyplot as plt

import pandas as pd

####knn最邻近算法####

inputfile = 'd:/data/sales_data.xls'

data = pd.read_excel(inputfile, index_col = u'序号') #导入数据

#数据是类别标签,要将它转换为数据

#用1来表示“好”、“是”、“高”这三个属性,用-1来表示“坏”、“否”、“低”

data[data == u'好'] = 1

data[data == u'是'] = 1

data[data == u'高'] = 1

data[data != 1] = -1

x = data.iloc[:,:3].as_matrix().astype(int)

y = data.iloc[:,3].as_matrix().astype(int)

#拆分训练数据与测试数据

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2)

#训练KNN分类器

clf = KNeighborsClassifier(algorithm='kd_tree')

clf.fit(x_train, y_train)

#测试结果

answer = clf.predict(x_test)

print(x_test)

print(answer)

print(y_test)

print(np.mean( answer == y_test))

#准确率

precision, recall, thresholds = precision_recall_curve(y_train, clf.predict(x_train))

print(classification_report(y_test, answer, target_names = ['高', '低']))

####贝叶斯分类器####

#训练贝叶斯分类器

clf = BernoulliNB()

clf.fit(x_train,y_train)

#测试结果

answer = clf.predict(x_test)

print(x_test)

print(answer)

print(y_test)

print(np.mean( answer == y_test))

print(classification_report(y_test, answer, target_names = ['低', '高']))

####决策树####

from sklearn.tree import DecisionTreeClassifier as DTC

dtc = DTC(criterion='entropy') #建立决策树模型,基于信息熵

dtc.fit(x_train, y_train) #训练模型

#导入相关函数,可视化决策树。

#导出的结果是一个dot文件,需要安装Graphviz才能将它转换为pdf或png等格式。

from sklearn.tree import export_graphviz

from sklearn.externals.six import StringIO

with open("tree.dot", 'w') as f:

f = export_graphviz(dtc, out_file = f)

#测试结果

answer = dtc.predict(x_test)

print(x_test)

print(answer)

print(y_test)

print(np.mean( answer == y_test))

print(classification_report(y_test, answer, target_names = ['低', '高']))

####SVM####

from sklearn.svm import SVC

clf =SVC()

clf.fit(x_train, y_train)

#测试结果

answer = clf.predict(x_test)

print(x_test)

print(answer)

print(y_test)

print(np.mean( answer == y_test))

print(classification_report(y_test, answer, target_names = ['低', '高']))

你可能感兴趣的:(python数据分析(十六))