GAN 论文大汇总

作者:chen_h
微信号 & QQ:862251340
微信公众号:coderpai
简书地址:https://www.jianshu.com/p/b7f6c88027f0


关于生成对抗网络(GAN)的新论文每周都会出现很多,跟踪发现他们非常难,更不用说去辨别那些研究人员对 GAN 各种奇奇怪怪,令人难以置信的创造性的命名!当然,你可以通过阅读 OpanAI 的博客或者 KDNuggets 中的概述性阅读教程,了解更多的有关 GAN 的信息。

在这里汇总了一个现在和经常使用的GAN论文,所有文章都链接到了 Arxiv 上面。

  • GAN — Generative Adversarial Networks
  • 3D-GAN — Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
  • AC-GAN — Conditional Image Synthesis With Auxiliary Classifier GANs
  • AdaGAN — AdaGAN: Boosting Generative Models
  • AffGAN — Amortised MAP Inference for Image Super-resolution
  • AL-CGAN — Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts
  • ALI — Adversarially Learned Inference
  • AMGAN — Generative Adversarial Nets with Labeled Data by Activation Maximization
  • AnoGAN — Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
  • ArtGAN — ArtGAN: Artwork Synthesis with Conditional Categorial GANs
  • b-GAN — b-GAN: Unified Framework of Generative Adversarial Networks
  • Bayesian GAN — Deep and Hierarchical Implicit Models
  • BEGAN — BEGAN: Boundary Equilibrium Generative Adversarial Networks
  • BiGAN — Adversarial Feature Learning
  • BS-GAN — Boundary-Seeking Generative Adversarial Networks
  • CGAN — Conditional Generative Adversarial Nets
  • CCGAN — Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks
  • CatGAN — Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks
  • CoGAN — Coupled Generative Adversarial Networks
  • Context-RNN-GAN — Contextual RNN-GANs for Abstract Reasoning Diagram Generation
  • C-RNN-GAN — C-RNN-GAN: Continuous recurrent neural networks with adversarial training
  • CVAE-GAN — CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training
  • CycleGAN — Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
  • DTN — Unsupervised Cross-Domain Image Generation
  • DCGAN — Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
  • DiscoGAN — Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
  • DR-GAN — Disentangled Representation Learning GAN for Pose-Invariant Face Recognition
  • DualGAN — DualGAN: Unsupervised Dual Learning for Image-to-Image Translation
  • EBGAN — Energy-based Generative Adversarial Network
  • f-GAN — f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
  • GAWWN — Learning What and Where to Draw
  • GoGAN — Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking
  • GP-GAN — GP-GAN: Towards Realistic High-Resolution Image Blending
  • IAN — Neural Photo Editing with Introspective Adversarial Networks
  • iGAN — Generative Visual Manipulation on the Natural Image Manifold
  • IcGAN — Invertible Conditional GANs for image editing
  • ID-CGAN- Image De-raining Using a Conditional Generative Adversarial Network
  • Improved GAN — Improved Techniques for Training GANs
  • InfoGAN — InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
  • LAPGAN — Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks
  • LR-GAN — LR-GAN: Layered Recursive Generative Adversarial Networks for Image Generation
  • LSGAN — Least Squares Generative Adversarial Networks
  • LS-GAN — Loss-Sensitive Generative Adversarial Networks on Lipschitz Densities
  • MGAN — Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks
  • MAGAN — MAGAN: Margin Adaptation for Generative Adversarial Networks
  • MAD-GAN — Multi-Agent Diverse Generative Adversarial Networks
  • MalGAN — Generating Adversarial Malware Examples for Black-Box Attacks Based on GAN
  • MARTA-GAN — Deep Unsupervised Representation Learning for Remote Sensing Images
  • McGAN — McGan: Mean and Covariance Feature Matching GAN
  • MedGAN — Generating Multi-label Discrete Electronic Health Records using Generative Adversarial Networks
  • MIX+GAN — Generalization and Equilibrium in Generative Adversarial Nets (GANs)
  • MPM-GAN — Message Passing Multi-Agent GANs
  • MV-BiGAN — Multi-view Generative Adversarial Networks
  • pix2pix — Image-to-Image Translation with Conditional Adversarial Networks
  • PPGN — Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space
  • PrGAN — 3D Shape Induction from 2D Views of Multiple Objects
  • RenderGAN — RenderGAN: Generating Realistic Labeled Data
  • RTT-GAN — Recurrent Topic-Transition GAN for Visual Paragraph Generation
  • SGAN — Stacked Generative Adversarial Networks
  • SGAN — Texture Synthesis with Spatial Generative Adversarial Networks
  • SAD-GAN — SAD-GAN: Synthetic Autonomous Driving using Generative Adversarial Networks
  • SalGAN — SalGAN: Visual Saliency Prediction with Generative Adversarial Networks
  • SEGAN — SEGAN: Speech Enhancement Generative Adversarial Network
  • SeGAN — SeGAN: Segmenting and Generating the Invisible
  • SeqGAN — SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient
  • SketchGAN — Adversarial Training For Sketch Retrieval
  • SL-GAN — Semi-Latent GAN: Learning to generate and modify facial images from attributes
  • Softmax-GAN — Softmax GAN
  • SRGAN — Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
  • S²GAN — Generative Image Modeling using Style and Structure Adversarial Networks
  • SSL-GAN — Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks
  • StackGAN — StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks
  • TGAN — Temporal Generative Adversarial Nets
  • TAC-GAN — TAC-GAN — Text Conditioned Auxiliary Classifier Generative Adversarial Network
  • TP-GAN — Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis
  • Triple-GAN — Triple Generative Adversarial Nets
  • Unrolled GAN — Unrolled Generative Adversarial Networks
  • VGAN — Generating Videos with Scene Dynamics
  • VGAN — Generative Adversarial Networks as Variational Training of Energy Based Models
  • VAE-GAN — Autoencoding beyond pixels using a learned similarity metric
  • VariGAN — Multi-View Image Generation from a Single-View
  • ViGAN — Image Generation and Editing with Variational Info Generative AdversarialNetworks
  • WGAN — Wasserstein GAN
  • WGAN-GP — Improved Training of Wasserstein GANs
  • WaterGAN — WaterGAN: Unsupervised Generative Network to Enable Real-time Color Correction of Monocular Underwater Images

如果你对 GAN 感兴趣,可以访问这个专题。欢迎交流。


作者:chen_h
微信号 & QQ:862251340
简书地址:https://www.jianshu.com/p/b7f6c88027f0

CoderPai 是一个专注于算法实战的平台,从基础的算法到人工智能算法都有设计。如果你对算法实战感兴趣,请快快关注我们吧。加入AI实战微信群,AI实战QQ群,ACM算法微信群,ACM算法QQ群。长按或者扫描如下二维码,关注 “CoderPai” 微信号(coderpai)

GAN 论文大汇总_第1张图片

GAN 论文大汇总_第2张图片

你可能感兴趣的:(人工智能,人工智能)