哈密顿绕行世界问题 (HDU - 2181 )(DFS)

一个规则的实心十二面体,它的 20个顶点标出世界著名的20个城市,你从一个城市出发经过每个城市刚好一次后回到出发的城市。
Input
前20行的第i行有3个数,表示与第i个城市相邻的3个城市.第20行以后每行有1个数m,m<=20,m>=1.m=0退出.
Output
输出从第m个城市出发经过每个城市1次又回到m的所有路线,如有多条路线,按字典序输出,每行1条路线.每行首先输出是第几条路线.然后个一个: 后列出经过的城市.参看Sample output
Sample Input
2 5 20
1 3 12
2 4 10
3 5 8
1 4 6
5 7 19
6 8 17
4 7 9
8 10 16
3 9 11
10 12 15
2 11 13
12 14 20
13 15 18
11 14 16
9 15 17
7 16 18
14 17 19
6 18 20
1 13 19
5
0
Sample Output
1: 5 1 2 3 4 8 7 17 18 14 15 16 9 10 11 12 13 20 19 6 5
2: 5 1 2 3 4 8 9 10 11 12 13 20 19 18 14 15 16 17 7 6 5
3: 5 1 2 3 10 9 16 17 18 14 15 11 12 13 20 19 6 7 8 4 5
4: 5 1 2 3 10 11 12 13 20 19 6 7 17 18 14 15 16 9 8 4 5
5: 5 1 2 12 11 10 3 4 8 9 16 15 14 13 20 19 18 17 7 6 5
6: 5 1 2 12 11 15 14 13 20 19 18 17 16 9 10 3 4 8 7 6 5
7: 5 1 2 12 11 15 16 9 10 3 4 8 7 17 18 14 13 20 19 6 5
8: 5 1 2 12 11 15 16 17 18 14 13 20 19 6 7 8 9 10 3 4 5
9: 5 1 2 12 13 20 19 6 7 8 9 16 17 18 14 15 11 10 3 4 5
10: 5 1 2 12 13 20 19 18 14 15 11 10 3 4 8 9 16 17 7 6 5
11: 5 1 20 13 12 2 3 4 8 7 17 16 9 10 11 15 14 18 19 6 5
12: 5 1 20 13 12 2 3 10 11 15 14 18 19 6 7 17 16 9 8 4 5
13: 5 1 20 13 14 15 11 12 2 3 10 9 16 17 18 19 6 7 8 4 5
14: 5 1 20 13 14 15 16 9 10 11 12 2 3 4 8 7 17 18 19 6 5
15: 5 1 20 13 14 15 16 17 18 19 6 7 8 9 10 11 12 2 3 4 5
16: 5 1 20 13 14 18 19 6 7 17 16 15 11 12 2 3 10 9 8 4 5
17: 5 1 20 19 6 7 8 9 10 11 15 16 17 18 14 13 12 2 3 4 5
18: 5 1 20 19 6 7 17 18 14 13 12 2 3 10 11 15 16 9 8 4 5
19: 5 1 20 19 18 14 13 12 2 3 4 8 9 10 11 15 16 17 7 6 5
20: 5 1 20 19 18 17 16 9 10 11 15 14 13 12 2 3 4 8 7 6 5
21: 5 4 3 2 1 20 13 12 11 10 9 8 7 17 16 15 14 18 19 6 5
22: 5 4 3 2 1 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5
23: 5 4 3 2 12 11 10 9 8 7 6 19 18 17 16 15 14 13 20 1 5
24: 5 4 3 2 12 13 14 18 17 16 15 11 10 9 8 7 6 19 20 1 5
25: 5 4 3 10 9 8 7 6 19 20 13 14 18 17 16 15 11 12 2 1 5
26: 5 4 3 10 9 8 7 17 16 15 11 12 2 1 20 13 14 18 19 6 5
27: 5 4 3 10 11 12 2 1 20 13 14 15 16 9 8 7 17 18 19 6 5
28: 5 4 3 10 11 15 14 13 12 2 1 20 19 18 17 16 9 8 7 6 5
29: 5 4 3 10 11 15 14 18 17 16 9 8 7 6 19 20 13 12 2 1 5
30: 5 4 3 10 11 15 16 9 8 7 17 18 14 13 12 2 1 20 19 6 5
31: 5 4 8 7 6 19 18 17 16 9 10 3 2 12 11 15 14 13 20 1 5
32: 5 4 8 7 6 19 20 13 12 11 15 14 18 17 16 9 10 3 2 1 5
33: 5 4 8 7 17 16 9 10 3 2 1 20 13 12 11 15 14 18 19 6 5
34: 5 4 8 7 17 18 14 13 12 11 15 16 9 10 3 2 1 20 19 6 5
35: 5 4 8 9 10 3 2 1 20 19 18 14 13 12 11 15 16 17 7 6 5
36: 5 4 8 9 10 3 2 12 11 15 16 17 7 6 19 18 14 13 20 1 5
37: 5 4 8 9 16 15 11 10 3 2 12 13 14 18 17 7 6 19 20 1 5
38: 5 4 8 9 16 15 14 13 12 11 10 3 2 1 20 19 18 17 7 6 5
39: 5 4 8 9 16 15 14 18 17 7 6 19 20 13 12 11 10 3 2 1 5
40: 5 4 8 9 16 17 7 6 19 18 14 15 11 10 3 2 12 13 20 1 5
41: 5 6 7 8 4 3 2 12 13 14 15 11 10 9 16 17 18 19 20 1 5
42: 5 6 7 8 4 3 10 9 16 17 18 19 20 13 14 15 11 12 2 1 5
43: 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5
44: 5 6 7 8 9 16 17 18 19 20 1 2 12 13 14 15 11 10 3 4 5
45: 5 6 7 17 16 9 8 4 3 10 11 15 14 18 19 20 13 12 2 1 5
46: 5 6 7 17 16 15 11 10 9 8 4 3 2 12 13 14 18 19 20 1 5
47: 5 6 7 17 16 15 11 12 13 14 18 19 20 1 2 3 10 9 8 4 5
48: 5 6 7 17 16 15 14 18 19 20 13 12 11 10 9 8 4 3 2 1 5
49: 5 6 7 17 18 19 20 1 2 3 10 11 12 13 14 15 16 9 8 4 5
50: 5 6 7 17 18 19 20 13 14 15 16 9 8 4 3 10 11 12 2 1 5
51: 5 6 19 18 14 13 20 1 2 12 11 15 16 17 7 8 9 10 3 4 5
52: 5 6 19 18 14 15 11 10 9 16 17 7 8 4 3 2 12 13 20 1 5
53: 5 6 19 18 14 15 11 12 13 20 1 2 3 10 9 16 17 7 8 4 5
54: 5 6 19 18 14 15 16 17 7 8 9 10 11 12 13 20 1 2 3 4 5
55: 5 6 19 18 17 7 8 4 3 2 12 11 10 9 16 15 14 13 20 1 5
56: 5 6 19 18 17 7 8 9 16 15 14 13 20 1 2 12 11 10 3 4 5
57: 5 6 19 20 1 2 3 10 9 16 15 11 12 13 14 18 17 7 8 4 5
58: 5 6 19 20 1 2 12 13 14 18 17 7 8 9 16 15 11 10 3 4 5
59: 5 6 19 20 13 12 11 10 9 16 15 14 18 17 7 8 4 3 2 1 5
60: 5 6 19 20 13 14 18 17 7 8 4 3 10 9 16 15 11 12 2 1 5

直接裸的DFS,但是有一些细节需要去注意,见代码。
这次与以往有些不同,对于图的搜索,我往往是用点去扩展,但是这道题需要去记录路径,所以,这个DFS我是用层数去扩展,把合法的点存储到a[]这数组,寻找下一个点只要从数组去寻找即可,然后去扩展
代码:

import java.util.Scanner;

public class Main 
{
    static int gg[][]=new int[21][3];
    static int vv[]=new int[21];//点的访问标记标记
    static int a[]=new int[20];//将路径保存在这里
    static int n,count;
    public static void main(String[] args) 
    {
        Scanner sc=new Scanner(System.in);
        for(int i=1;i<=20;i++)
        {
            gg[i][0]=sc.nextInt();
            gg[i][1]=sc.nextInt();
            gg[i][2]=sc.nextInt();
        }
        for(;;)
        {
            n=sc.nextInt();
            if(n==0)break;
            vv[n]=1;
            DFS(0);
            vv[n]=0;
            count=0;//因为有多组数据,所以一定记得得把这个静态变量置0,不然输出去序号就有问题,
        }
    }
    static void DFS(int cur)//cur是点层数,不是点,记住
    {
        if(cur==20)//都填满之后,检测终点是否与起点连通
        {
            if(gg[a[19]][0]==n||gg[a[19]][1]==n||gg[a[19]][2]==n)
            {
                System.out.print((++count)+":  ");//count就是用来累计求序号的...
                for(int e:a)
                    System.out.print(e+" ");
                System.out.println(n);
            }
        }
        if(cur==0)//第一个点必须得是n,当然我们也可以直接从DFS(1)开始搜索,前提是a[0]得初始化为n
        {
            a[cur]=n;
            DFS(cur+1);
            return;
        }
        for(int i=0;i<3;i++)
        {
            int point=gg[a[cur-1]][i];//当前可填的点,是从a[cur-1]得来的
            if(vv[point]==1)
                continue;
            a[cur]=point;
            vv[point]=1;
            DFS(cur+1);
            vv[point]=0;
        }

    }
}

你可能感兴趣的:(解题报告,DFS)