卡特兰数:h0=1,h1=1,h2=h0*h1+h1*h0……
引用:主要引用与全排列问题,例如括号匹配有多少种方式:有n个左括号,n个右括号,一共有多少种正确的匹配方式。考虑栈的出栈顺序有多少种。
1~1
2~2
3~5
4~14
模板(1~100)
#include
#include
#include
#include
using namespace std;
#define MAXN 9999
#define MAXSIZE 1010
#define DLEN 4
class BigNum
{
private:
int a[500]; //可以控制大数的位数
int len;
public:
BigNum(){len=1;memset(a,0,sizeof(a));} //构造函数
BigNum(const int); //将一个int类型的变量转化成大数
BigNum(const char*); //将一个字符串类型的变量转化为大数
BigNum(const BigNum &); //拷贝构造函数
BigNum &operator=(const BigNum &); //重载赋值运算符,大数之间进行赋值运算
friend istream& operator>>(istream&,BigNum&); //重载输入运算符
friend ostream& operator<<(ostream&,BigNum&); //重载输出运算符
BigNum operator+(const BigNum &)const; //重载加法运算符,两个大数之间的相加运算
BigNum operator-(const BigNum &)const; //重载减法运算符,两个大数之间的相减运算
BigNum operator*(const BigNum &)const; //重载乘法运算符,两个大数之间的相乘运算
BigNum operator/(const int &)const; //重载除法运算符,大数对一个整数进行相除
BigNum operator^(const int &)const; //大数的n次方运算
int operator%(const int &)const; //大数对一个int类型的变量进行取模运算
bool operator>(const BigNum &T)const; //大数和另一个大数的大小比较
bool operator>(const int &t)const; //大数和一个int类型的变量的大小比较
void print(); //输出大数
};
BigNum::BigNum(const int b) //将一个int类型的变量转化为大数
{
int c,d=b;
len=0;
memset(a,0,sizeof(a));
while(d>MAXN)
{
c=d-(d/(MAXN+1))*(MAXN+1);
d=d/(MAXN+1);
a[len++]=c;
}
a[len++]=d;
}
BigNum::BigNum(const char *s) //将一个字符串类型的变量转化为大数
{
int t,k,index,L,i;
memset(a,0,sizeof(a));
L=strlen(s);
len=L/DLEN;
if(L%DLEN)len++;
index=0;
for(i=L-1;i>=0;i-=DLEN)
{
t=0;
k=i-DLEN+1;
if(k<0)k=0;
for(int j=k;j<=i;j++)
t=t*10+s[j]-'0';
a[index++]=t;
}
}
BigNum::BigNum(const BigNum &T):len(T.len) //拷贝构造函数
{
int i;
memset(a,0,sizeof(a));
for(i=0;ioperator=(const BigNum &n) //重载赋值运算符,大数之间赋值运算
{
int i;
len=n.len;
memset(a,0,sizeof(a));
for(i=0;ireturn *this;
}
istream& operator>>(istream &in,BigNum &b)
{
char ch[MAXSIZE*4];
int i=-1;
in>>ch;
int L=strlen(ch);
int count=0,sum=0;
for(i=L-1;i>=0;)
{
sum=0;
int t=1;
for(int j=0;j<4&&i>=0;j++,i--,t*=10)
{
sum+=(ch[i]-'0')*t;
}
b.a[count]=sum;
count++;
}
b.len=count++;
return in;
}
ostream& operator<<(ostream& out,BigNum& b) //重载输出运算符
{
int i;
cout<1];
for(i=b.len-2;i>=0;i--)
{
printf("%04d",b.a[i]);
}
return out;
}
BigNum BigNum::operator+(const BigNum &T)const //两个大数之间的相加运算
{
BigNum t(*this);
int i,big;
big=T.len>len?T.len:len;
for(i=0;iif(t.a[i]>MAXN)
{
t.a[i+1]++;
t.a[i]-=MAXN+1;
}
}
if(t.a[big]!=0)
t.len=big+1;
else t.len=big;
return t;
}
BigNum BigNum::operator-(const BigNum &T)const //两个大数之间的相减运算
{
int i,j,big;
bool flag;
BigNum t1,t2;
if(*this>T)
{
t1=*this;
t2=T;
flag=0;
}
else
{
t1=T;
t2=*this;
flag=1;
}
big=t1. len;
for(i=0;iif(t1.a[i]1;
while(t1.a[j]==0)
j++;
t1.a[j--]--;
while(j>i)
t1.a[j--]+=MAXN;
t1.a[i]+=MAXN+1-t2.a[i];
}
else t1.a[i]-=t2.a[i];
}
t1.len=big;
while(t1.a[len-1]==0 && t1.len>1)
{
t1.len--;
big--;
}
if(flag)
t1.a[big-1]=0-t1.a[big-1];
return t1;
}
BigNum BigNum::operator*(const BigNum &T)const //两个大数之间的相乘
{
BigNum ret;
int i,j,up;
int temp,temp1;
for(i=0;i0;
for(j=0;jif(temp>MAXN)
{
temp1=temp-temp/(MAXN+1)*(MAXN+1);
up=temp/(MAXN+1);
ret.a[i+j]=temp1;
}
else
{
up=0;
ret.a[i+j]=temp;
}
}
if(up!=0)
ret.a[i+j]=up;
}
ret.len=i+j;
while(ret.a[ret.len-1]==0 && ret.len>1)ret.len--;
return ret;
}
BigNum BigNum::operator/(const int &b)const //大数对一个整数进行相除运算
{
BigNum ret;
int i,down=0;
for(i=len-1;i>=0;i--)
{
ret.a[i]=(a[i]+down*(MAXN+1))/b;
down=a[i]+down*(MAXN+1)-ret.a[i]*b;
}
ret.len=len;
while(ret.a[ret.len-1]==0 && ret.len>1)
ret.len--;
return ret;
}
int BigNum::operator%(const int &b)const //大数对一个 int类型的变量进行取模
{
int i,d=0;
for(i=len-1;i>=0;i--)
d=((d*(MAXN+1))%b+a[i])%b;
return d;
}
BigNum BigNum::operator^(const int &n)const //大数的n次方运算
{
BigNum t,ret(1);
int i;
if(n<0)exit(-1);
if(n==0)return 1;
if(n==1)return *this;
int m=n;
while(m>1)
{
t=*this;
for(i=1;(i<<1)<=m;i<<=1)
t=t*t;
m-=i;
ret=ret*t;
if(m==1)ret=ret*(*this);
}
return ret;
}
bool BigNum::operator>(const BigNum &T)const //大数和另一个大数的大小比较
{
int ln;
if(len>T.len)return true;
else if(len==T.len)
{
ln=len-1;
while(a[ln]==T.a[ln]&&ln>=0)
ln--;
if(ln>=0 && a[ln]>T.a[ln])
return true;
else
return false;
}
else
return false;
}
bool BigNum::operator>(const int &t)const //大数和一个int类型的变量的大小比较
{
BigNum b(t);
return *this>b;
}
void BigNum::print() //输出大数
{
int i;
printf("%d",a[len-1]);
for(i=len-2;i>=0;i--)
printf("%04d",a[i]);
printf("\n");
}
BigNum f[110];//卡特兰数
int main()
{
f[0]=1;
for(int i=1;i<=100;i++)
f[i]=f[i-1]*(4*i-2)/(i+1); //卡特兰数递推式
int n;
while(scanf("%d",&n)==1)
{
if(n==-1)break;
f[n].print();
}
return 0;
}
第36个会超过long long
卡特兰数取余:
输出1~1000000卡特兰数%1e9+7的结果
#include
using namespace std;
#define ll long long
const int N=2e5+10,M=4e6+10,inf=1e9+10,mod=1e9+7;
const ll INF=1e18+10;
ll a[M];
ll inv[M];
void init()
//逆元,原卡特兰公式为h(n)=h(n-1)*(4*n-2)/(n+1),因为除法不能取余,所以要用逆元把/n+1改为*逆[n+1].
{
inv[1] = 1;
for(int i=2;i<=1000010;i++)
{
inv[i]=(mod-mod/i)*inv[mod%i]%mod;//逆元公式
}
}
int main()
{
a[0]=1;
init();
for(ll i=1;i<=1000000;i++)
{
a[i]=(((a[i-1]*(4*i-2))%mod)*inv[i+1])%mod;
}
int T,cas=1;
scanf("%d",&T);
while(T--)
{
int n;
scanf("%d",&n);
printf("%lld\n",a[n]);
}
return 0;
}