生成TFRecord小实例

在使用大量图片进行网络训练时,将图片批量转换为TFRecord可以极大的提升效率。本小实例程序针对5个分类共计2500张图片生成TFRecord。

import tensorflow as tf
import os
import random
import math
import sys

#  验证集数量
_NUM_TEST = 800
#s随机种子
_RANDOM_SEED = 0
#数据块
_NUM_SHARDS = 5
#数据集路径
DATASET_DIR = "D:/Jupyter_path/TFstudy2019/slim/images/"
#标签文件名字 
LABELS_FILENAME = "D:/Jupyter_path/TFstudy2019/slim/images/labels.txt"

#定义tfrecord文件的路径+名字
def _get_dataset_filename(dataset_dir,split_name,shard_id):
    output_filename = "imaghe_%s_%05d-of-%05d.tfrecord" %(split_name,shard_id,_NUM_SHARDS)
    return os.path.join(dataset_dir,output_filename)

#判断tfrecord文件是否存在
def _dataset_exists(dataset_dir):
    for split_name in ["train","test"]:
        for shard_id in range(_NUM_SHARDS):
            #定义tfrecord文件的路径+名字
            output_filename = _get_dataset_filename(dataset_dir,split_name,shard_id)
        if not tf.gfile.Exists(output_filename):
            return False
    return True

#获取所有文件及分类
def _get_filenames_and_classes(dataset_dir):
    #数据目录
    directories = []
    # 分类名称
    class_names = []
    for filename in os.listdir(dataset_dir):
        #合并文件路径
        path = os.path.join(dataset_dir,filename)
        #判断该路径是否为目录
        if os.path.isdir(path):
            #加入数据目录
            directories.append(path)
            #加入类别名称
            class_names.append(filename)     #此filename是文件夹名字,即类别
    
    photo_filenames = []
    #循环每个分类的文件夹
    for directory in directories:
        for filename in os.listdir(directory):
            path = os.path.join(directory,filename) #此filename是图片名字
            #把图片加入图片列表
            photo_filenames.append(path)         
    return photo_filenames,class_names              #photo_filenames中保存的是图片的绝对路径

def int64_feature(values):
    if not isinstance(values,(tuple,list)):
        values = [values]
    return tf.train.Feature(int64_list=tf.train.Int64List(value=values))

def bytes_feature(values):
    return tf.train.Feature(bytes_list=tf.train.BytesList(value=[values]))
tf.train.Feature

def image_to_tfexample(image_data,image_format,class_id):
    #abatract base class for protocol messages
    return tf.train.Example(features=tf.train.Features(feature={
        'image/encode':bytes_feature(image_data),
        'image/format':bytes_feature(image_format),
        'image/class/label':int64_feature(class_id),
    }))

def write_label_file(labels_to_class_names,dataset_dir,filename=LABELS_FILENAME):
    labels_filenames = os.path.join(dataset_dir,filename)
    with tf.gfile.Open(labels_filenames,'w') as f:
        for label in labels_to_class_names:
            class_name = labels_to_class_names[label]
            f.write("%d:%s\n" %(label,class_name))

#把数据转换为TFRecord格式
def _convert_dataset(split_name,filenames,class_names_to_ids,dataset_dir):
    assert split_name in ['train','test']
    #计算每个数据块有多少数据,当数据量比较大时候才需要切分,这里只是演示
    num_per_shard = int(len(filenames)/_NUM_SHARDS)
    with tf.Graph().as_default():
        with tf.Session() as sess:
            for shard_id in range(_NUM_SHARDS):
                #定义tfrecord文件的路径+名字
                output_filename = _get_dataset_filename(dataset_dir,split_name,shard_id)
                with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer:
                    #每一个数据块开始的位置
                    start_ndx = shard_id * num_per_shard
                    #每一个数据块最后的位置
                    end_ndx = min((shard_id+1) * num_per_shard,len(filenames))
                    for i in range(start_ndx,end_ndx):
                        try:   #将损坏的图片跳过
                            sys.stdout.write('\r>> Converting image %d%d shard %d' % (i+1,len(filenames),shard_id))
                            sys.stdout.flush()
                            #读取图片
                            image_data = tf.gfile.FastGFile(filenames[i],'rb').read()
                            #获得图片类别的名称
                            class_name = os.path.basename(os.path.dirname(filenames[i]))
                            #找到类别名称对应的id
                            class_id = class_names_to_ids[class_name]
                            #生成tfrecord文件
                            example = image_to_tfexample(image_data,b'jpg',class_id)
                            tfrecord_writer.write(example.SerializeToString())
                        except IOError as e:
                            print("could not read:",filenames[i])
                            print("Error:",e)
                            print("skip it\n")
    sys.stdout.write('\n')
    sys.stdout.flush()

if __name__ == '__main__':
    #判断tfrecord文件是否存在
    if _dataset_exists(DATASET_DIR):
        print('tfrecord文件已存在')
    else:
        #获得所有图片及分类
        photo_filenames,class_names = _get_filenames_and_classes(DATASET_DIR)
        #把分类转换为字典格式,类似于{'animal':0,'flower':1,'guita':2,'house':3,'motobike':4}
        class_names_to_ids = dict(zip(class_names,range(len(class_names))))
        
        #把数据切分成训练集和数据集
        random.seed(_RANDOM_SEED)
        random.shuffle(photo_filenames)
        training_filenames = photo_filenames[_NUM_TEST:]
        testing_filenames = photo_filenames[:_NUM_TEST]
        
        #数据转化
        _convert_dataset('train',training_filenames,class_names_to_ids,DATASET_DIR)
        _convert_dataset('test',training_filenames,class_names_to_ids,DATASET_DIR)
        
        #输出labels文件
        labels_to_class_names = dict(zip(range(len(class_names)),class_names))
        write_label_file(labels_to_class_names,DATASET_DIR)

 程序运行完毕后生成了TFRecord和labels文件,见下图红色框

生成TFRecord小实例_第1张图片

 

你可能感兴趣的:(TensorFlow)