#coding=utf-8
import cv2
# 使用的是HyperLPR已经训练好了的分类器
watch_cascade = cv2.CascadeClassifier('model/cascade.xml')
# 先读取图片
image = cv2.imread("D:\\Downloads\\License-Plate-Recognition-master\\test\\car5.jpg")
def detectPlateRough(image_gray,resize_h = 720,en_scale =1.08 ,top_bottom_padding_rate = 0.05):
if top_bottom_padding_rate>0.2:
print("error:top_bottom_padding_rate > 0.2:",top_bottom_padding_rate)
exit(1)
height = image_gray.shape[0]
padding = int(height*top_bottom_padding_rate)
scale = image_gray.shape[1]/float(image_gray.shape[0])
image = cv2.resize(image_gray, (int(scale*resize_h), resize_h))
image_color_cropped = image[padding:resize_h-padding,0:image_gray.shape[1]]
image_gray = cv2.cvtColor(image_color_cropped,cv2.COLOR_RGB2GRAY)
watches = watch_cascade.detectMultiScale(image_gray, en_scale, 2, minSize=(36, 9),maxSize=(36*40, 9*40))
cropped_images = []
for (x, y, w, h) in watches:
#cv2.rectangle(image_color_cropped, (x, y), (x + w, y + h), (0, 0, 255), 1)
x -= w * 0.14
w += w * 0.28
y -= h * 0.15
h += h * 0.3
#cv2.rectangle(image_color_cropped, (int(x), int(y)), (int(x + w), int(y + h)), (0, 0, 255), 1)
cropped = cropImage(image_color_cropped, (int(x), int(y), int(w), int(h)))
cropped_images.append([cropped,[x, y+padding, w, h]])
#cv2.imshow("imageShow", cropped)
#cv2.waitKey(0)
return cropped_images
def cropImage(image,rect):
cv2.imshow("imageShow", image)
cv2.waitKey(0)
x, y, w, h = computeSafeRegion(image.shape,rect)
cv2.imshow("imageShow", image[y:y+h,x:x+w])
cv2.waitKey(0)
return image[y:y+h,x:x+w]
def computeSafeRegion(shape,bounding_rect):
top = bounding_rect[1] # y
bottom = bounding_rect[1] + bounding_rect[3] # y + h
left = bounding_rect[0] # x
right = bounding_rect[0] + bounding_rect[2] # x + w
min_top = 0
max_bottom = shape[0]
min_left = 0
max_right = shape[1]
#print(left,top,right,bottom)
#print(max_bottom,max_right)
if top < min_top:
top = min_top
if left < min_left:
left = min_left
if bottom > max_bottom:
bottom = max_bottom
if right > max_right:
right = max_right
return [left,top,right-left,bottom-top]
images = detectPlateRough(image,image.shape[0],top_bottom_padding_rate=0.1)
print("检测到车牌数", len(images))
效果: