- zobovision随谈H.265/HEVC编码FPGA实现(一)
zobovision
视频图像编解码FPGAIPfpga开发视频编解码
zobovision随谈H.265/HEVC编码FPGA实现(一)H.265/HEVC出来已有10年,但市场应用难言巅峰,正如古董级的H.264现在仍然大行其道,H.265的全面应用仍有待市场发酵,至少在硬件产品端应用,值得期待。一来H.265相对H.264而言,压缩技术确实要先进不少,不管是理论上还是实际效果方面;二是H.265相对后来者H.266/VVC等而言,实用性更强,性价比更高,产品端的
- 【视频编码\VVC】变换编码基础知识及标准设计相关参数
鴒凰
视频编码音视频视频编解码视频编码h.266VVC笔记
变化编码的基础知识定义:变换编码是将以空间域像素形式描述的图像转换至变换域,以变换系数的形式加以表示。大部分图像都包含较多平坦区域和内容变化缓慢的区域,使得图像能量在空间域的分散转换为变换域的相对集中分布,从而达到空间去冗余的目的。变换概述选用DCT变换的原因:DCT形式与输入信号无关并且存在快速实现算法,并且性能接近K-L变换。H.264第一次使用了整数DCTH.265沿用了整数DCT,进行了不
- 视频编码结构
一箭辰空
音视频
VVCVVC标准对应的参考软件平台是VTM(VVCTestModel)两个基本目标1.高压缩性能,定义一套视频编码技术,其压缩性能要远优于以往的同类标准。2.宽应用领域,能够有效地用于比先前标准更广阔的范围。编码过程图像分块、预测、变换、量化、熵编码、环路滤波1.图像分块如图1所示,VVC在编码原理和基本结构方面没有突破,仍沿用从H.261就开始的基于块的混合视频编码框架,即预测加变换的分块编码方
- H266/VVC多样化视频编码工具概述
DogDaoDao
H266(VVC)标准H266VVC全景视频编码视频编解码屏幕内容编码
全景视频编码全景视频:具有360度全包围视角的球面视频。全景视频编码:包括H266在内的视频编码算法都是以平面视频为对象的,为了采用传统的视频编码编码算法,全景视频需要转换为平面视频,其中经纬图等角映射(ERP)、立方体映射(CMP)是常用的格式。水平环绕运动补偿:普通平面视频编码算法的运动补偿中,当运动矢量指向参考图像边界区域外的像素时,会对参考图像边界进行填充以获取参考像素值,填充方法是用距离
- H266/VVC率失真优化与速率控制概述
DogDaoDao
H266(VVC)标准H266VVC率失真视频编解码实时音视频拉格朗日
率失真优化技术率失真优化:视频编码的主要目的是在保证一定视频质量的条件下尽量降低视频的编码比特率,或者在一定编码比特率限制条件下尽量地减小编码失真。在固定的编码框架下,为了应对不同的视频内容,往往有多种候选的编码方式,编码器的一个主要工作就是在某种策略选择最优的编码参数,以实现最优的编码性能。基于率失真理论的编码参数优化被称为率失真优化,率失真优化技术是保证编码器效率的主要手段。率失真理论:在允许
- H266/VVC环路滤波技术概述
DogDaoDao
H266(VVC)标准H266VVC环路滤波SAO编码失真视频编解码音视频
环路滤波环路滤波:是提高编码视频主客观质量的有效工具,不同于图像增强处理中的滤波技术,环路滤波是在视频编码过程进行滤波,滤波后的图像用于后续图像的编码,即位于“环路”中。环路滤波的作用:一方面提高了编码图像的质量,一方面为后续编码图像提供了高质量的参考图像。常见的编码失真:方块效应、振铃效应、颜色偏差、图像模糊等常见编码失真效应。H266环路滤波技术:如下图,H266标准的环路滤波技术包括亮度映射
- H266/VVC网络适配层概述
DogDaoDao
H266(VVC)标准H266视频编解码NALUVVC网络适配层实时音视频
视频编码标准的分层结构视频数据分层的必要性:网络类型的多样性、不同的应用场景对视频有不同的需求。编码标准的分层结构:为了适应不同网络和应用需求,视频编码数据根据其内容特性被分成若干NAL单元(NALUnit,NALU),并对NALU的内容特性进行标识。网络只需要根据NALU及其标识就可以优化视频传输性能,不再需要亲自分析视频数据的内容特性。如下图就是典型的分层结构。H266中NAL的作用机制:原始
- H.266/VVC帧间预测技术学习:几何划分模式(Geometric partitioning mode, GPM)
涵小呆
VVC/H.266视频编码H.266/VVC
几何划分模式(Geometricpartitioningmode,GPM)原理针对图像中运动物体的边界部分,VVC采用了几何划分模式进行帧间预测。如下图所示,GPM模式在运动物体的边界处进行了更精细的划分。划分类型使用GPM模式时,通过几何定位的直线将CU划分为两部分(下图所示)。分割线的位置从数学上是根据特定分区的角度参数φ和偏移参数ρ得出的,如下图所示。VVC标准中的GPM规定将360°不等间
- H266/VVC变换编码技术概述
DogDaoDao
H266(VVC)标准人工智能机器学习H266VVC变换编码视频编解码DCT
视频变换编码变换编码:是指将以空间域像素形式描述的图像转换至变换域。以变换系数的形式加以表示。适当的变换可使图像能量在空间域的分散分布转换为在变换域的相对集中分布,从而达到去除空间冗余的目的。DCT:离散余弦变换(DiscreteCosineTransform,DCT)与去相关性性能最优的K-L变换相比,与输入信号无关且存在快速实现算法,性能接近K-L变换,广泛应用在图像视频编码中。H264首次使
- CompressAI:深度学习与传统图像压缩
qq_41627642
深度学习多模态深度学习人工智能
1、图像压缩算法原理传统的有损图像压缩方法,如JPEG,JPEG2000,HEVC或AV1或VVC,在类似的编码方案上进行了迭代改进:将图像划分为像素块,使用变换域通过线性变换(例如:DCT或DWT)去相关空间频率,基于相邻值执行一些预测,量化转换系数,最后使用有效的熵编码器(例如:CABAC[11])将量化值和预测侧信息编码成比特流。另一方面,基于人工神经网络的编解码器主要依赖于学习分析和综合非
- H266/VVC帧间预测编码技术概述
DogDaoDao
H266(VVC)标准人工智能视频编解码H266VVC深度学习预测编码实时音视频
帧间预测编码简述帧间预测利用视频时间域的相关性,使用邻近已编码图像像素值预测当前图像的像素值,能有效去除视频时域冗余。目前主要的视频编码标准中,帧间预测都采用基于块的运动补偿技术,不同的编码标准有不同的分块方式。为当前图像的每个像素块在之前已编码图像找到一个最佳匹配块,这个寻找过程就称为运动估计(MotionEstimation,ME)。用于预测的图像被称为参考图像或参考帧(ReferencePi
- H266/VVC帧内预测编码
DogDaoDao
H266(VVC)标准H266VVC帧内预测预测编码视频编解码实时音视频深度学习
预测编码技术预测编码(PredictionCoding)是指利用已编码的一个或多个样本值,根据某种模型或方法,对当前的样本值进行预测,并对样本真实值和预测值之间的差值进行编码。视频中的每个像素看成一个信源符号,它通常与空域上或时域上邻近的像素具有较强的相关性,因此视频是一种有记忆信源。预测编码技术通过预测模型消除像素间的相关性,得到的差值信号可以认为没有相关性,或者相关性很小,因此可以作为无记忆信
- Windows11编译VTM源码生成Visual Studio 工程
DogDaoDao
#VTMvisualstudioVTMH266VVC视频编解码WindowsVS2022
VTM介绍VTM作为H266/VVC标准的官方参考软件,一直用作H266/VVC标准的研究和迭代。关于H2666/VVC标准的介绍、代码、提案、文档等,可以参考H266/VVC编码标准介绍。官方代码地址:https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM(最新)git镜像地址:https://github.com/yanceyxin/VVCSo
- DCC2023:基于梯度线性模型的帧内色度预测
Dillon2015
H.266/VVC视频编码CCLMVVC
本来自DCC2023文章《GradientLinearModelforChromaIntraPrediction》在VVC中引入了CCLM工具,CCLM用于帧内预测,它根据一个线性模型通过亮度像素重建值获得色度像素的预测值。对于YUV420格式的视频,需要先将亮度分量使用低通滤波器下采样到和色度分量同样的分辨率,然后使用线性模型计算色度的预测值。然而下采样过程会丢失空域信息(例如边界、梯度),为了
- 【论文解读】Comparing VVC, HEVC and AV1 using Objective and Subjective Assessments
DogDaoDao
论文解读AV1VVCHEVC视频编解码HMVTMAOM
时间:2020级别:IEEE机构:IEEE组织摘要:对3种最新的视频编码标准HEVC(HighEfficiencyvideoCoding)测试模型HM(HighEfficiencyvideoCoding)、amediavideo1(AV1)和VersatilevideoCoding测试模型(VTM)进行了客观和主观质量评价。通过精细化选择9个源序列,使其具有多样性和代表性,并在预定义的目标码率下对
- H266/VVC标准的编码结构介绍
DogDaoDao
H266(VVC)标准H266VVC视频编解码实时音视频VTM
概述CVS:H266的编码码流包含一个或多个编码视频序列(CodedVideoSwquence,CVS),每个CVS以帧内随机接入点(IntraRandomAccessPoint,IRAP)或逐渐解码刷新(GradualDecodingRefresh,GDR)图像开始。CVS是时域独立可解码的基本单元。CLVS:编码视频序列层,当编码码流只包含一层时,CVS与CLVS一致。AU:访问单元PU:图像
- H266/VVC编码标准介绍
DogDaoDao
H266(VVC)标准VVCH266视频编解码实时音视频VTM
视频编码标准多样的视频应用催生了多种的视频编码方法。为了使编码后的码流能够在大范围内通用和规范,从20世纪80年代开始,国际组织就开始对视频编码建立国际标准。什么是视频编码标准:视频编码标准只规定了码流的语法语义和解码器,只要求视频编码后的码流符合标准的语法结构,解码器就可以根据码流的语法语义进行正常解码。因此,符合某个解码标准的编码器是有很大的自由度的,只要编码后的码流符合标准规定即可。编码器输
- 屏幕内容编码:HEVC SCC、VVC、AVS3、AV1和EVC
若忘即安
VVC/H.266音频编码解码
近年来,随着许多相关应用变得非常流行,包括计算机生成的文本、图形和动画在内的屏幕内容视频引起了比以往更多的关注。然而,传统的视频编解码器通常被设计成处理摄像机捕获的自然视频。另一方面,屏幕内容视频表现出不同的信号特征和人类对失真的视觉敏感度的不同水平。为了解决对这种内容进行高效编码的需要,已经专门开发了许多编码工具,并且在编码效率方面取得了巨大进步。所有最近开发的视频编码标准都包含屏幕内容编码(S
- H.266/VVC的关键编码技术(五):AI, RA, LD三种编码结构
若忘即安
VVC/H.266视频处理音频编码解码
AI,RA,LD三种编码结构VVC中采用三种编码结构:全帧内(AI,A11lntra)、低延迟(LD,LowDelay),随机接入(RA,RandomAccess),分别用于满足不同场景下的编码需求。AI编码在全帧内编码结构下,序列中每一帧图像均采用帧内编码,具有各自独立的上图所示,I帧不需要参考其他帧的像素信息,可独立的进行编解码,且每一帧的量化参数都保持一致,AI编码结构适合信道环境较差,容易
- H.266/VVC的编码框架
若忘即安
VVC/H.266视频处理音频编码解码
VVC编码框架VVC仍沿用从H.261开始使用的基于块的混合视频编码框架,包括帧内预测、帧间预测、变换、量化、环路滤波、嫡编码等。基本流程是首先利用帧内/帧间预测编码消除空域/时域冗余,接着对预测残差进行变换量化编码消除残差数据间的空域冗余,最后通过嫡编码消除经变换和量化后的残差数据中的信息嫡冗余。在VVC中,视频进入编码器后,每帧图像首先被划分为互不重叠的图像块,称之为编码树单元(CodingT
- H.266VVC的关键编码技术(一):帧内预测
若忘即安
VVC/H.266视频处理音频编码解码调制与编码策略
1.帧内预测帧内预测是指利用视频中相邻像素之间的相似性或者关联性,使用当前图像己编码的相邻像素预测当前像素,从而达到去除空间冗余的口的,得到的预测残差将经过后续的变换、量化和嫡编码等模块进一步处理生成最终的码流。(1)帧内预测模式为了捕捉自然视频中任意的边缘方向,VVC中的帧内预测模式从HEVC中使用的33种扩展到65种。红色虚线表示了VVC中新出现的帧内角度预测模式,黑色为HEVC原有的帧内预测
- AVC、HEVC、VVC帧间预测技术
傻不拉几的程序员
工作学习编解码AVCHEVCVVC
帧间预测总体思路:帧间预测主要的工作是运动估计与运动补偿。所谓运动估计简单说就是在参考帧中找到当前块的最优参考块,用运动向量(MV)表示参考块与当前块的位置关系。所谓运动补偿简单说就是对参考块与当前块求差值得到残差用于传输。总的过程:通过搜索算法找到最优的参考块,计算MV,计算残差,MV提供位置信息,残差提供值的信息。========================================
- AOMedia发布免版税沉浸音频规范IAMF
LiveVideoStack_
音视频
11月10日,开放媒体联盟(AOMedia)发布了旗下首个沉浸式音频规范IAMF(https://aomediacodec.github.io/iamf/),IAMF是一种编解码器无关的容器规范,可以携带回放时间渲染算法和音频混音的信息,而且和旗下的AV1视频标准一样为免版税。从AV1开始,AOMedia就在用开放来对抗老牌的标准组织ITU与ISO/IEC的HEVC、VVC等标准。目前,AV1已经
- 编解码再进化:Ali266与下一代视频技术
LiveVideoStack_
音视频
过去的一年见证了人类百年不遇的大事记,也见证了多种视频应用的厚积薄发。而因此所带来的视频数据量的爆发式增长更加加剧了对高效编解码这样的底层硬核技术的急迫需求。正是在这样的大环境下,在ITU-TVCEG和ISO/IECMPEG两大标准组织再次联手推出的最新视频编解码标准VVC定稿不久之后,阿里巴巴的视频团队开始全力投入开展VVC软件编解码的开发工作。本次LiveVideoStackCon2021北京
- 阿里云视频云发布实时高清VVC编码器Ali266,真正开启VVC商用之路
阿里云视频云
阿里云视频云阿里云视频处理视频编码编码器视频云
基于新一代国际视频编解码标准H.266/VVC,阿里云视频云近日发布了实时高清编码器Ali266,有力推动H.266/VVC标准应用的落地,真正开启H.266/VVC的商用之路,并强力赋能超高清4K、8K、以及AR/VR等应用的真实普及。编码器Ali266=实时+高清+超压缩阿里云视频云于7月中发布了实时高清VVC编码器Ali266首个版本,从已公开的资料可知,这是目前全世界最快的VVC编码器。具
- AVS3:双向光流BIO
Dillon2015
AVS3视频编码avs3双向光流BIOBDOF1024程序员节
AVS3引入了双向光流(BI-directionalOpticalflow,BIO)技术,和H.266/VVC中的BDOF类似,BIO用于解决基于块的预测会存在块内某些区域仍会有偏差的现象导致需要划分更小的块。通过补偿小的像素区域的位移,BIO可以使用更大的块来编码从而节省码率,达到像素级预测的效果。如图1,左侧是双向光流补偿前的预测结果,右侧是补偿后的预测结果。图1补偿前后的预测传统的双向预测对
- AVS3:跨分量预测TSCPM
Dillon2015
AVS3视频编码avs3TSCPMCCLM
TSCPM两步跨分量预测模式(TSCPM,TwoStepCross-componentPredictionMode)通过探索不同分量之间的线性关系去除分量间冗余。TSCPM分为两个步骤执行,首先使用Co-locatedluma块通过参数α和β生成尺寸相同的临时预测块,第二步再进行下采样,得到色度分量的预测值,如图1。图1TSCPMAVS3的TSCPM仅用于intra模式中,类似于VVC中的CCLM
- 帧间快速算法论文阅读
什么都不懂的小青蛙
智能视频编码算法论文阅读视频编解码机器学习深度学习人工智能
LowcomplexityintercodingschemeforVersatileVideoCoding(VVC)通过分析相邻CU的编码区域,预测当前CU的编码区域,以终止不必要的分割模式。1、2、3、4表示当前CU(CU0)的相邻CU。根据空间相关性,当前CU的面积预测为wiw_iwi的值分别为0.3,0.2,0.3,0.2。(考虑到水平方向和垂直方向的相关性大于对角线方向的相关性)当预测面积
- VVC中图片的划分
Ginkgo
在VVC中,输入的视频首先被划为为相等大小的块(最大支持划分为128×128大小的块,虽然VVC支持的变换的块最大尺寸为64×64),这些等大的块成为CTUs(codingtreeunits),每一个CTU都有Y、Cb、Cr三个等大的CU。图1混合编码框架把输入的图像划分为CTUs之后,再对CTUs进行进一步的归类。在HEVC中,可以把CTUs分为Slice和Tile,其中Slice可以进一步划分
- 多维评测指标解读第17届MSU世界编码器大赛全高清10bit赛道结果
阿里云视频云
硬核干货云计算视频云
超高清视频纤毫毕现的关键一环。01主要指标多项第一,带宽节省48%近日,第17届MSU世界编码器大赛全高清10bit赛道成绩揭晓,阿里自研的H.266/VVC编码器Ali266在该赛道最高效的1fps档次上获得两项冠军,相较大赛基准编码器x265可节省48%的带宽,有效降低超高清视频门槛,推动其普及。MSU世界编码器大赛是指由莫斯科国立大学(LomonosovMoscowStateUniversi
- Linux的Initrd机制
被触发
linux
Linux 的 initrd 技术是一个非常普遍使用的机制,linux2.6 内核的 initrd 的文件格式由原来的文件系统镜像文件转变成了 cpio 格式,变化不仅反映在文件格式上, linux 内核对这两种格式的 initrd 的处理有着截然的不同。本文首先介绍了什么是 initrd 技术,然后分别介绍了 Linux2.4 内核和 2.6 内核的 initrd 的处理流程。最后通过对 Lin
- maven本地仓库路径修改
bitcarter
maven
默认maven本地仓库路径:C:\Users\Administrator\.m2
修改maven本地仓库路径方法:
1.打开E:\maven\apache-maven-2.2.1\conf\settings.xml
2.找到
 
- XSD和XML中的命名空间
darrenzhu
xmlxsdschemanamespace命名空间
http://www.360doc.com/content/12/0418/10/9437165_204585479.shtml
http://blog.csdn.net/wanghuan203/article/details/9203621
http://blog.csdn.net/wanghuan203/article/details/9204337
http://www.cn
- Java 求素数运算
周凡杨
java算法素数
网络上对求素数之解数不胜数,我在此总结归纳一下,同时对一些编码,加以改进,效率有成倍热提高。
第一种:
原理: 6N(+-)1法 任何一个自然数,总可以表示成为如下的形式之一: 6N,6N+1,6N+2,6N+3,6N+4,6N+5 (N=0,1,2,…)
- java 单例模式
g21121
java
想必单例模式大家都不会陌生,有如下两种方式来实现单例模式:
class Singleton {
private static Singleton instance=new Singleton();
private Singleton(){}
static Singleton getInstance() {
return instance;
}
- Linux下Mysql源码安装
510888780
mysql
1.假设已经有mysql-5.6.23-linux-glibc2.5-x86_64.tar.gz
(1)创建mysql的安装目录及数据库存放目录
解压缩下载的源码包,目录结构,特殊指定的目录除外:
- 32位和64位操作系统
墙头上一根草
32位和64位操作系统
32位和64位操作系统是指:CPU一次处理数据的能力是32位还是64位。现在市场上的CPU一般都是64位的,但是这些CPU并不是真正意义上的64 位CPU,里面依然保留了大部分32位的技术,只是进行了部分64位的改进。32位和64位的区别还涉及了内存的寻址方面,32位系统的最大寻址空间是2 的32次方= 4294967296(bit)= 4(GB)左右,而64位系统的最大寻址空间的寻址空间则达到了
- 我的spring学习笔记10-轻量级_Spring框架
aijuans
Spring 3
一、问题提问:
→ 请简单介绍一下什么是轻量级?
轻量级(Leightweight)是相对于一些重量级的容器来说的,比如Spring的核心是一个轻量级的容器,Spring的核心包在文件容量上只有不到1M大小,使用Spring核心包所需要的资源也是很少的,您甚至可以在小型设备中使用Spring。
 
- mongodb 环境搭建及简单CURD
antlove
WebInstallcurdNoSQLmongo
一 搭建mongodb环境
1. 在mongo官网下载mongodb
2. 在本地创建目录 "D:\Program Files\mongodb-win32-i386-2.6.4\data\db"
3. 运行mongodb服务 [mongod.exe --dbpath "D:\Program Files\mongodb-win32-i386-2.6.4\data\
- 数据字典和动态视图
百合不是茶
oracle数据字典动态视图系统和对象权限
数据字典(data dictionary)是 Oracle 数据库的一个重要组成部分,这是一组用于记录数据库信息的只读(read-only)表。随着数据库的启动而启动,数据库关闭时数据字典也关闭 数据字典中包含
数据库中所有方案对象(schema object)的定义(包括表,视图,索引,簇,同义词,序列,过程,函数,包,触发器等等)
数据库为一
- 多线程编程一般规则
bijian1013
javathread多线程java多线程
如果两个工两个以上的线程都修改一个对象,那么把执行修改的方法定义为被同步的,如果对象更新影响到只读方法,那么只读方法也要定义成同步的。
不要滥用同步。如果在一个对象内的不同的方法访问的不是同一个数据,就不要将方法设置为synchronized的。
- 将文件或目录拷贝到另一个Linux系统的命令scp
bijian1013
linuxunixscp
一.功能说明 scp就是security copy,用于将文件或者目录从一个Linux系统拷贝到另一个Linux系统下。scp传输数据用的是SSH协议,保证了数据传输的安全,其格式如下: scp 远程用户名@IP地址:文件的绝对路径
- 【持久化框架MyBatis3五】MyBatis3一对多关联查询
bit1129
Mybatis3
以教员和课程为例介绍一对多关联关系,在这里认为一个教员可以叫多门课程,而一门课程只有1个教员教,这种关系在实际中不太常见,通过教员和课程是多对多的关系。
示例数据:
地址表:
CREATE TABLE ADDRESSES
(
ADDR_ID INT(11) NOT NULL AUTO_INCREMENT,
STREET VAR
- cookie状态判断引发的查找问题
bitcarter
formcgi
先说一下我们的业务背景:
1.前台将图片和文本通过form表单提交到后台,图片我们都做了base64的编码,并且前台图片进行了压缩
2.form中action是一个cgi服务
3.后台cgi服务同时供PC,H5,APP
4.后台cgi中调用公共的cookie状态判断方法(公共的,大家都用,几年了没有问题)
问题:(折腾两天。。。。)
1.PC端cgi服务正常调用,cookie判断没
- 通过Nginx,Tomcat访问日志(access log)记录请求耗时
ronin47
一、Nginx通过$upstream_response_time $request_time统计请求和后台服务响应时间
nginx.conf使用配置方式:
log_format main '$remote_addr - $remote_user [$time_local] "$request" ''$status $body_bytes_sent "$http_r
- java-67- n个骰子的点数。 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
bylijinnan
java
public class ProbabilityOfDice {
/**
* Q67 n个骰子的点数
* 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
* 在以下求解过程中,我们把骰子看作是有序的。
* 例如当n=2时,我们认为(1,2)和(2,1)是两种不同的情况
*/
private stati
- 看别人的博客,觉得心情很好
Cb123456
博客心情
以为写博客,就是总结,就和日记一样吧,同时也在督促自己。今天看了好长时间博客:
职业规划:
http://www.iteye.com/blogs/subjects/zhiyeguihua
android学习:
1.http://byandby.i
- [JWFD开源工作流]尝试用原生代码引擎实现循环反馈拓扑分析
comsci
工作流
我们已经不满足于仅仅跳跃一次,通过对引擎的升级,今天我测试了一下循环反馈模式,大概跑了200圈,引擎报一个溢出错误
在一个流程图的结束节点中嵌入一段方程,每次引擎运行到这个节点的时候,通过实时编译器GM模块,计算这个方程,计算结果与预设值进行比较,符合条件则跳跃到开始节点,继续新一轮拓扑分析,直到遇到
- JS常用的事件及方法
cwqcwqmax9
js
事件 描述
onactivate 当对象设置为活动元素时触发。
onafterupdate 当成功更新数据源对象中的关联对象后在数据绑定对象上触发。
onbeforeactivate 对象要被设置为当前元素前立即触发。
onbeforecut 当选中区从文档中删除之前在源对象触发。
onbeforedeactivate 在 activeElement 从当前对象变为父文档其它对象之前立即
- 正则表达式验证日期格式
dashuaifu
正则表达式IT其它java其它
正则表达式验证日期格式
function isDate(d){
var v = d.match(/^(\d{4})-(\d{1,2})-(\d{1,2})$/i);
if(!v) {
this.focus();
return false;
}
}
<input value="2000-8-8" onblu
- Yii CModel.rules() 方法 、validate预定义完整列表、以及说说验证
dcj3sjt126com
yii
public array rules () {return} array 要调用 validate() 时应用的有效性规则。 返回属性的有效性规则。声明验证规则,应重写此方法。 每个规则是数组具有以下结构:array('attribute list', 'validator name', 'on'=>'scenario name', ...validation
- UITextAttributeTextColor = deprecated in iOS 7.0
dcj3sjt126com
ios
In this lesson we used the key "UITextAttributeTextColor" to change the color of the UINavigationBar appearance to white. This prompts a warning "first deprecated in iOS 7.0."
Ins
- 判断一个数是质数的几种方法
EmmaZhao
Mathpython
质数也叫素数,是只能被1和它本身整除的正整数,最小的质数是2,目前发现的最大的质数是p=2^57885161-1【注1】。
判断一个数是质数的最简单的方法如下:
def isPrime1(n):
for i in range(2, n):
if n % i == 0:
return False
return True
但是在上面的方法中有一些冗余的计算,所以
- SpringSecurity工作原理小解读
坏我一锅粥
SpringSecurity
SecurityContextPersistenceFilter
ConcurrentSessionFilter
WebAsyncManagerIntegrationFilter
HeaderWriterFilter
CsrfFilter
LogoutFilter
Use
- JS实现自适应宽度的Tag切换
ini
JavaScripthtmlWebcsshtml5
效果体验:http://hovertree.com/texiao/js/3.htm
该效果使用纯JavaScript代码,实现TAB页切换效果,TAB标签根据内容自适应宽度,点击TAB标签切换内容页。
HTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
- Hbase Rest API : 数据查询
kane_xie
RESThbase
hbase(hadoop)是用java编写的,有些语言(例如python)能够对它提供良好的支持,但也有很多语言使用起来并不是那么方便,比如c#只能通过thrift访问。Rest就能很好的解决这个问题。Hbase的org.apache.hadoop.hbase.rest包提供了rest接口,它内嵌了jetty作为servlet容器。
启动命令:./bin/hbase rest s
- JQuery实现鼠标拖动元素移动位置(源码+注释)
明子健
jqueryjs源码拖动鼠标
欢迎讨论指正!
print.html代码:
<!DOCTYPE html>
<html>
<head>
<meta http-equiv=Content-Type content="text/html;charset=utf-8">
<title>发票打印</title>
&l
- Postgresql 连表更新字段语法 update
qifeifei
PostgreSQL
下面这段sql本来目的是想更新条件下的数据,可是这段sql却更新了整个表的数据。sql如下:
UPDATE tops_visa.visa_order
SET op_audit_abort_pass_date = now()
FROM
tops_visa.visa_order as t1
INNER JOIN tops_visa.visa_visitor as t2
ON t1.
- 将redis,memcache结合使用的方案?
tcrct
rediscache
公司架构上使用了阿里云的服务,由于阿里的kvstore收费相当高,打算自建,自建后就需要自己维护,所以就有了一个想法,针对kvstore(redis)及ocs(memcache)的特点,想自己开发一个cache层,将需要用到list,set,map等redis方法的继续使用redis来完成,将整条记录放在memcache下,即findbyid,save等时就memcache,其它就对应使用redi
- 开发中遇到的诡异的bug
wudixiaotie
bug
今天我们服务器组遇到个问题:
我们的服务是从Kafka里面取出数据,然后把offset存储到ssdb中,每个topic和partition都对应ssdb中不同的key,服务启动之后,每次kafka数据更新我们这边收到消息,然后存储之后就发现ssdb的值偶尔是-2,这就奇怪了,最开始我们是在代码中打印存储的日志,发现没什么问题,后来去查看ssdb的日志,才发现里面每次set的时候都会对同一个key