- zobovision随谈H.265/HEVC编码FPGA实现(一)
zobovision
视频图像编解码FPGAIPfpga开发视频编解码
zobovision随谈H.265/HEVC编码FPGA实现(一)H.265/HEVC出来已有10年,但市场应用难言巅峰,正如古董级的H.264现在仍然大行其道,H.265的全面应用仍有待市场发酵,至少在硬件产品端应用,值得期待。一来H.265相对H.264而言,压缩技术确实要先进不少,不管是理论上还是实际效果方面;二是H.265相对后来者H.266/VVC等而言,实用性更强,性价比更高,产品端的
- 【视频编码\VVC】变换编码基础知识及标准设计相关参数
鴒凰
视频编码音视频视频编解码视频编码h.266VVC笔记
变化编码的基础知识定义:变换编码是将以空间域像素形式描述的图像转换至变换域,以变换系数的形式加以表示。大部分图像都包含较多平坦区域和内容变化缓慢的区域,使得图像能量在空间域的分散转换为变换域的相对集中分布,从而达到空间去冗余的目的。变换概述选用DCT变换的原因:DCT形式与输入信号无关并且存在快速实现算法,并且性能接近K-L变换。H.264第一次使用了整数DCTH.265沿用了整数DCT,进行了不
- 视频编码结构
一箭辰空
音视频
VVCVVC标准对应的参考软件平台是VTM(VVCTestModel)两个基本目标1.高压缩性能,定义一套视频编码技术,其压缩性能要远优于以往的同类标准。2.宽应用领域,能够有效地用于比先前标准更广阔的范围。编码过程图像分块、预测、变换、量化、熵编码、环路滤波1.图像分块如图1所示,VVC在编码原理和基本结构方面没有突破,仍沿用从H.261就开始的基于块的混合视频编码框架,即预测加变换的分块编码方
- H266/VVC多样化视频编码工具概述
DogDaoDao
H266(VVC)标准H266VVC全景视频编码视频编解码屏幕内容编码
全景视频编码全景视频:具有360度全包围视角的球面视频。全景视频编码:包括H266在内的视频编码算法都是以平面视频为对象的,为了采用传统的视频编码编码算法,全景视频需要转换为平面视频,其中经纬图等角映射(ERP)、立方体映射(CMP)是常用的格式。水平环绕运动补偿:普通平面视频编码算法的运动补偿中,当运动矢量指向参考图像边界区域外的像素时,会对参考图像边界进行填充以获取参考像素值,填充方法是用距离
- H266/VVC率失真优化与速率控制概述
DogDaoDao
H266(VVC)标准H266VVC率失真视频编解码实时音视频拉格朗日
率失真优化技术率失真优化:视频编码的主要目的是在保证一定视频质量的条件下尽量降低视频的编码比特率,或者在一定编码比特率限制条件下尽量地减小编码失真。在固定的编码框架下,为了应对不同的视频内容,往往有多种候选的编码方式,编码器的一个主要工作就是在某种策略选择最优的编码参数,以实现最优的编码性能。基于率失真理论的编码参数优化被称为率失真优化,率失真优化技术是保证编码器效率的主要手段。率失真理论:在允许
- H266/VVC环路滤波技术概述
DogDaoDao
H266(VVC)标准H266VVC环路滤波SAO编码失真视频编解码音视频
环路滤波环路滤波:是提高编码视频主客观质量的有效工具,不同于图像增强处理中的滤波技术,环路滤波是在视频编码过程进行滤波,滤波后的图像用于后续图像的编码,即位于“环路”中。环路滤波的作用:一方面提高了编码图像的质量,一方面为后续编码图像提供了高质量的参考图像。常见的编码失真:方块效应、振铃效应、颜色偏差、图像模糊等常见编码失真效应。H266环路滤波技术:如下图,H266标准的环路滤波技术包括亮度映射
- H266/VVC网络适配层概述
DogDaoDao
H266(VVC)标准H266视频编解码NALUVVC网络适配层实时音视频
视频编码标准的分层结构视频数据分层的必要性:网络类型的多样性、不同的应用场景对视频有不同的需求。编码标准的分层结构:为了适应不同网络和应用需求,视频编码数据根据其内容特性被分成若干NAL单元(NALUnit,NALU),并对NALU的内容特性进行标识。网络只需要根据NALU及其标识就可以优化视频传输性能,不再需要亲自分析视频数据的内容特性。如下图就是典型的分层结构。H266中NAL的作用机制:原始
- H.266/VVC帧间预测技术学习:几何划分模式(Geometric partitioning mode, GPM)
涵小呆
VVC/H.266视频编码H.266/VVC
几何划分模式(Geometricpartitioningmode,GPM)原理针对图像中运动物体的边界部分,VVC采用了几何划分模式进行帧间预测。如下图所示,GPM模式在运动物体的边界处进行了更精细的划分。划分类型使用GPM模式时,通过几何定位的直线将CU划分为两部分(下图所示)。分割线的位置从数学上是根据特定分区的角度参数φ和偏移参数ρ得出的,如下图所示。VVC标准中的GPM规定将360°不等间
- H266/VVC变换编码技术概述
DogDaoDao
H266(VVC)标准人工智能机器学习H266VVC变换编码视频编解码DCT
视频变换编码变换编码:是指将以空间域像素形式描述的图像转换至变换域。以变换系数的形式加以表示。适当的变换可使图像能量在空间域的分散分布转换为在变换域的相对集中分布,从而达到去除空间冗余的目的。DCT:离散余弦变换(DiscreteCosineTransform,DCT)与去相关性性能最优的K-L变换相比,与输入信号无关且存在快速实现算法,性能接近K-L变换,广泛应用在图像视频编码中。H264首次使
- CompressAI:深度学习与传统图像压缩
qq_41627642
深度学习多模态深度学习人工智能
1、图像压缩算法原理传统的有损图像压缩方法,如JPEG,JPEG2000,HEVC或AV1或VVC,在类似的编码方案上进行了迭代改进:将图像划分为像素块,使用变换域通过线性变换(例如:DCT或DWT)去相关空间频率,基于相邻值执行一些预测,量化转换系数,最后使用有效的熵编码器(例如:CABAC[11])将量化值和预测侧信息编码成比特流。另一方面,基于人工神经网络的编解码器主要依赖于学习分析和综合非
- H266/VVC帧间预测编码技术概述
DogDaoDao
H266(VVC)标准人工智能视频编解码H266VVC深度学习预测编码实时音视频
帧间预测编码简述帧间预测利用视频时间域的相关性,使用邻近已编码图像像素值预测当前图像的像素值,能有效去除视频时域冗余。目前主要的视频编码标准中,帧间预测都采用基于块的运动补偿技术,不同的编码标准有不同的分块方式。为当前图像的每个像素块在之前已编码图像找到一个最佳匹配块,这个寻找过程就称为运动估计(MotionEstimation,ME)。用于预测的图像被称为参考图像或参考帧(ReferencePi
- H266/VVC帧内预测编码
DogDaoDao
H266(VVC)标准H266VVC帧内预测预测编码视频编解码实时音视频深度学习
预测编码技术预测编码(PredictionCoding)是指利用已编码的一个或多个样本值,根据某种模型或方法,对当前的样本值进行预测,并对样本真实值和预测值之间的差值进行编码。视频中的每个像素看成一个信源符号,它通常与空域上或时域上邻近的像素具有较强的相关性,因此视频是一种有记忆信源。预测编码技术通过预测模型消除像素间的相关性,得到的差值信号可以认为没有相关性,或者相关性很小,因此可以作为无记忆信
- Windows11编译VTM源码生成Visual Studio 工程
DogDaoDao
#VTMvisualstudioVTMH266VVC视频编解码WindowsVS2022
VTM介绍VTM作为H266/VVC标准的官方参考软件,一直用作H266/VVC标准的研究和迭代。关于H2666/VVC标准的介绍、代码、提案、文档等,可以参考H266/VVC编码标准介绍。官方代码地址:https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM(最新)git镜像地址:https://github.com/yanceyxin/VVCSo
- DCC2023:基于梯度线性模型的帧内色度预测
Dillon2015
H.266/VVC视频编码CCLMVVC
本来自DCC2023文章《GradientLinearModelforChromaIntraPrediction》在VVC中引入了CCLM工具,CCLM用于帧内预测,它根据一个线性模型通过亮度像素重建值获得色度像素的预测值。对于YUV420格式的视频,需要先将亮度分量使用低通滤波器下采样到和色度分量同样的分辨率,然后使用线性模型计算色度的预测值。然而下采样过程会丢失空域信息(例如边界、梯度),为了
- 【论文解读】Comparing VVC, HEVC and AV1 using Objective and Subjective Assessments
DogDaoDao
论文解读AV1VVCHEVC视频编解码HMVTMAOM
时间:2020级别:IEEE机构:IEEE组织摘要:对3种最新的视频编码标准HEVC(HighEfficiencyvideoCoding)测试模型HM(HighEfficiencyvideoCoding)、amediavideo1(AV1)和VersatilevideoCoding测试模型(VTM)进行了客观和主观质量评价。通过精细化选择9个源序列,使其具有多样性和代表性,并在预定义的目标码率下对
- H266/VVC标准的编码结构介绍
DogDaoDao
H266(VVC)标准H266VVC视频编解码实时音视频VTM
概述CVS:H266的编码码流包含一个或多个编码视频序列(CodedVideoSwquence,CVS),每个CVS以帧内随机接入点(IntraRandomAccessPoint,IRAP)或逐渐解码刷新(GradualDecodingRefresh,GDR)图像开始。CVS是时域独立可解码的基本单元。CLVS:编码视频序列层,当编码码流只包含一层时,CVS与CLVS一致。AU:访问单元PU:图像
- H266/VVC编码标准介绍
DogDaoDao
H266(VVC)标准VVCH266视频编解码实时音视频VTM
视频编码标准多样的视频应用催生了多种的视频编码方法。为了使编码后的码流能够在大范围内通用和规范,从20世纪80年代开始,国际组织就开始对视频编码建立国际标准。什么是视频编码标准:视频编码标准只规定了码流的语法语义和解码器,只要求视频编码后的码流符合标准的语法结构,解码器就可以根据码流的语法语义进行正常解码。因此,符合某个解码标准的编码器是有很大的自由度的,只要编码后的码流符合标准规定即可。编码器输
- 视频音频编码解码技术初探
WongKyunban
音视频开发视音频编码技术视频编码音频编码流媒体封装格式
视频音频编码解码技术初探视频播放器原理流媒体协议技术封装技术视频压缩编码技术音频压缩编码技术网络视音频服务平时我们下载的电影、音乐文件有各种各样的格式,它们用不同的后缀来表示,如avi、rmvb、mp4、flv、mkv等,这些格式代表了不同的封装格式。所谓的封装格式就是把视频数据和音频数据打包成一个文件的规范。视频播放器原理视频播放器播放一个网上的视频文件的经过:CreatedwithRaphaë
- 屏幕内容编码:HEVC SCC、VVC、AVS3、AV1和EVC
若忘即安
VVC/H.266音频编码解码
近年来,随着许多相关应用变得非常流行,包括计算机生成的文本、图形和动画在内的屏幕内容视频引起了比以往更多的关注。然而,传统的视频编解码器通常被设计成处理摄像机捕获的自然视频。另一方面,屏幕内容视频表现出不同的信号特征和人类对失真的视觉敏感度的不同水平。为了解决对这种内容进行高效编码的需要,已经专门开发了许多编码工具,并且在编码效率方面取得了巨大进步。所有最近开发的视频编码标准都包含屏幕内容编码(S
- H.266/VVC的关键编码技术(五):AI, RA, LD三种编码结构
若忘即安
VVC/H.266视频处理音频编码解码
AI,RA,LD三种编码结构VVC中采用三种编码结构:全帧内(AI,A11lntra)、低延迟(LD,LowDelay),随机接入(RA,RandomAccess),分别用于满足不同场景下的编码需求。AI编码在全帧内编码结构下,序列中每一帧图像均采用帧内编码,具有各自独立的上图所示,I帧不需要参考其他帧的像素信息,可独立的进行编解码,且每一帧的量化参数都保持一致,AI编码结构适合信道环境较差,容易
- H.266/VVC的编码框架
若忘即安
VVC/H.266视频处理音频编码解码
VVC编码框架VVC仍沿用从H.261开始使用的基于块的混合视频编码框架,包括帧内预测、帧间预测、变换、量化、环路滤波、嫡编码等。基本流程是首先利用帧内/帧间预测编码消除空域/时域冗余,接着对预测残差进行变换量化编码消除残差数据间的空域冗余,最后通过嫡编码消除经变换和量化后的残差数据中的信息嫡冗余。在VVC中,视频进入编码器后,每帧图像首先被划分为互不重叠的图像块,称之为编码树单元(CodingT
- H.266VVC的关键编码技术(一):帧内预测
若忘即安
VVC/H.266视频处理音频编码解码调制与编码策略
1.帧内预测帧内预测是指利用视频中相邻像素之间的相似性或者关联性,使用当前图像己编码的相邻像素预测当前像素,从而达到去除空间冗余的口的,得到的预测残差将经过后续的变换、量化和嫡编码等模块进一步处理生成最终的码流。(1)帧内预测模式为了捕捉自然视频中任意的边缘方向,VVC中的帧内预测模式从HEVC中使用的33种扩展到65种。红色虚线表示了VVC中新出现的帧内角度预测模式,黑色为HEVC原有的帧内预测
- AVC、HEVC、VVC帧间预测技术
傻不拉几的程序员
工作学习编解码AVCHEVCVVC
帧间预测总体思路:帧间预测主要的工作是运动估计与运动补偿。所谓运动估计简单说就是在参考帧中找到当前块的最优参考块,用运动向量(MV)表示参考块与当前块的位置关系。所谓运动补偿简单说就是对参考块与当前块求差值得到残差用于传输。总的过程:通过搜索算法找到最优的参考块,计算MV,计算残差,MV提供位置信息,残差提供值的信息。========================================
- AOMedia发布免版税沉浸音频规范IAMF
LiveVideoStack_
音视频
11月10日,开放媒体联盟(AOMedia)发布了旗下首个沉浸式音频规范IAMF(https://aomediacodec.github.io/iamf/),IAMF是一种编解码器无关的容器规范,可以携带回放时间渲染算法和音频混音的信息,而且和旗下的AV1视频标准一样为免版税。从AV1开始,AOMedia就在用开放来对抗老牌的标准组织ITU与ISO/IEC的HEVC、VVC等标准。目前,AV1已经
- 编解码再进化:Ali266与下一代视频技术
LiveVideoStack_
音视频
过去的一年见证了人类百年不遇的大事记,也见证了多种视频应用的厚积薄发。而因此所带来的视频数据量的爆发式增长更加加剧了对高效编解码这样的底层硬核技术的急迫需求。正是在这样的大环境下,在ITU-TVCEG和ISO/IECMPEG两大标准组织再次联手推出的最新视频编解码标准VVC定稿不久之后,阿里巴巴的视频团队开始全力投入开展VVC软件编解码的开发工作。本次LiveVideoStackCon2021北京
- 阿里云视频云发布实时高清VVC编码器Ali266,真正开启VVC商用之路
阿里云视频云
阿里云视频云阿里云视频处理视频编码编码器视频云
基于新一代国际视频编解码标准H.266/VVC,阿里云视频云近日发布了实时高清编码器Ali266,有力推动H.266/VVC标准应用的落地,真正开启H.266/VVC的商用之路,并强力赋能超高清4K、8K、以及AR/VR等应用的真实普及。编码器Ali266=实时+高清+超压缩阿里云视频云于7月中发布了实时高清VVC编码器Ali266首个版本,从已公开的资料可知,这是目前全世界最快的VVC编码器。具
- AVS3:双向光流BIO
Dillon2015
AVS3视频编码avs3双向光流BIOBDOF1024程序员节
AVS3引入了双向光流(BI-directionalOpticalflow,BIO)技术,和H.266/VVC中的BDOF类似,BIO用于解决基于块的预测会存在块内某些区域仍会有偏差的现象导致需要划分更小的块。通过补偿小的像素区域的位移,BIO可以使用更大的块来编码从而节省码率,达到像素级预测的效果。如图1,左侧是双向光流补偿前的预测结果,右侧是补偿后的预测结果。图1补偿前后的预测传统的双向预测对
- AVS3:跨分量预测TSCPM
Dillon2015
AVS3视频编码avs3TSCPMCCLM
TSCPM两步跨分量预测模式(TSCPM,TwoStepCross-componentPredictionMode)通过探索不同分量之间的线性关系去除分量间冗余。TSCPM分为两个步骤执行,首先使用Co-locatedluma块通过参数α和β生成尺寸相同的临时预测块,第二步再进行下采样,得到色度分量的预测值,如图1。图1TSCPMAVS3的TSCPM仅用于intra模式中,类似于VVC中的CCLM
- 帧间快速算法论文阅读
什么都不懂的小青蛙
智能视频编码算法论文阅读视频编解码机器学习深度学习人工智能
LowcomplexityintercodingschemeforVersatileVideoCoding(VVC)通过分析相邻CU的编码区域,预测当前CU的编码区域,以终止不必要的分割模式。1、2、3、4表示当前CU(CU0)的相邻CU。根据空间相关性,当前CU的面积预测为wiw_iwi的值分别为0.3,0.2,0.3,0.2。(考虑到水平方向和垂直方向的相关性大于对角线方向的相关性)当预测面积
- VVC中图片的划分
Ginkgo
在VVC中,输入的视频首先被划为为相等大小的块(最大支持划分为128×128大小的块,虽然VVC支持的变换的块最大尺寸为64×64),这些等大的块成为CTUs(codingtreeunits),每一个CTU都有Y、Cb、Cr三个等大的CU。图1混合编码框架把输入的图像划分为CTUs之后,再对CTUs进行进一步的归类。在HEVC中,可以把CTUs分为Slice和Tile,其中Slice可以进一步划分
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号