from numpy import *
###创建一些实验样本#####################
def loadDataSet():
postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
classVec = [0,1,0,1,0,1] #1 is abusive, 0 not
return postingList,classVec
####创建一个不重复的词表#############
def createVocabList(dataSet):
vocabSet = set([]) #创建空集合
for document in dataSet:
vocabSet = vocabSet | set(document) # 操作符|用于求两个集合的并集
return list(vocabSet)
"""该函数的输入为词汇表及某个文档,输出为文档向量"""
def setOfWords2Vec(vocabList, inputSet):
returnVec = [0]*len(vocabList) # 创建一个其中所含元素都为0的向量
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] = 1 ######list.index(obj)返回查找对象的索引位置
else:
print("the word: %s is not in my Vocabulary!" % word)
return returnVec
def trainNB0(trainMatrix,trainCategory):
numTrainDocs = len(trainMatrix) # 计算矩阵行数
numWords = len(trainMatrix[0]) # 计算矩阵列数
pAbusive = sum(trainCategory)/float(numTrainDocs) # 计算各个类别的概率
p0Num = ones(numWords); p1Num = ones(numWords) #change to ones()
p0Denom = 2.0; p1Denom = 2.0 #change to 2.0
'''接下来计算词汇表中各个词汇在不同分类中出现的概率'''
for i in range(numTrainDocs): # 依次读取文件
if trainCategory[i] == 1: # 这里的if函数判断文档类别
p1Num += trainMatrix[i] # 判断词在文档中出现的个数
p1Denom += sum(trainMatrix[i]) #判断某个文档中的次总数
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
p1Vect = log(p1Num/p1Denom) #change to log()
p0Vect = log(p0Num/p0Denom) #change to log()
return p0Vect,p1Vect,pAbusive
###朴素bayes分类函数##########
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
p1 = sum(vec2Classify * p1Vec) + log(pClass1) #element-wise mult
p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
if p1 > p0:
return 1
else:
return 0
########bayes词袋模型####################################
def bagOfWords2VecMN(vocabList, inputSet):
returnVec = [0]*len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] += 1
return returnVec
def testingNB():
listOPosts,listClasses = loadDataSet()
myVocabList = createVocabList(listOPosts)
trainMat=[]
for postinDoc in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
p0V,p1V,pAb = trainNB0(array(trainMat),array(listClasses))
testEntry = ['love', 'my', 'dalmation']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print(testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb))
testEntry = ['stupid', 'garbage']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print(testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb))
# print(testingNB())
listOPosts,listClass=loadDataSet()
myVocabList=createVocabList(listOPosts)
trainMat=[]
for postinDoc in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
pOV,p1V,pAb=trainNB0(trainMat,listClass)
print(p1V)
# ##################利用bayes过滤垃圾邮件################
# ####文件解析###############
# def textParse(bigString): #input is big string, #output is word list
# import re
# listOfTokens = re.split(r'\W*', bigString)
# return [tok.lower() for tok in listOfTokens if len(tok) > 2]
# def spamTest():
# docList=[]; classList = []; fullText =[]
# for i in range(1,26):
# wordList = textParse(open('email/spam/%d.txt' % i,'r').read())
# docList.append(wordList)
# fullText.extend(wordList)
# classList.append(1)
# wordList = textParse(open('email/ham/%d.txt' % i,'r').read())
# docList.append(wordList)
# fullText.extend(wordList)
# classList.append(0)
# vocabList = createVocabList(docList) #创建词表
# trainingSet = list(range(50)); testSet=[] #create test set
# for i in range(10): # 筛选测试集
# randIndex = int(random.uniform(0,len(trainingSet)))
# testSet.append(trainingSet[randIndex])
# del(trainingSet[randIndex])
# trainMat=[]; trainClasses = []
# for docIndex in trainingSet:#train the classifier (get probs) trainNB0
# trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
# trainClasses.append(classList[docIndex])
# p0V,p1V,pSpam = trainNB0(array(trainMat),array(trainClasses))
# errorCount = 0
# for docIndex in testSet: #对测试集进行分类
# wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
# if classifyNB(array(wordVector),p0V,p1V,pSpam) != classList[docIndex]:
# errorCount += 1
# print ("classification error",docList[docIndex])
# print ('the error rate is: ',float(errorCount)/len(testSet))
# #return vocabList,fullText
# ##################使用bayes从个人广告中获取区域倾向#############
# ###统计词汇表在文本中出现的次数,根据次数从高到低排序,最后筛选出最高的30个词######
# def calcMostFreq(vocabList,fullText):
# import operator
# freqDict = {}
# for token in vocabList:
# freqDict[token]=fullText.count(token)
# sortedFreq = sorted(freqDict.items(), key=operator.itemgetter(1), reverse=True)
# return sortedFreq[:5]
# def localWords(feed1,feed0):
# import feedparser
# docList=[]; classList = []; fullText =[]
# minLen = min(len(feed1['entries']),len(feed0['entries']))
# for i in range(minLen):
# wordList = textParse(feed1['entries'][i]['summary'])
# docList.append(wordList)
# fullText.extend(wordList)
# classList.append(1) #NY is class 1
# wordList = textParse(feed0['entries'][i]['summary'])
# docList.append(wordList)
# fullText.extend(wordList)
# classList.append(0)
# vocabList = createVocabList(docList)#create vocabulary
# top30Words = calcMostFreq(vocabList,fullText) #remove top 30 words
# for pairW in top30Words:
# if pairW[0] in vocabList: vocabList.remove(pairW[0])
# trainingSet = list(range(2*minLen)); testSet=[] #create test set
# for i in range(5):
# randIndex = int(random.uniform(0,len(trainingSet)))
# testSet.append(trainingSet[randIndex])
# del(trainingSet[randIndex])
# trainMat=[]; trainClasses = []
# for docIndex in trainingSet:#train the classifier (get probs) trainNB0
# trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
# trainClasses.append(classList[docIndex])
# p0V,p1V,pSpam = trainNB0(array(trainMat),array(trainClasses))
# errorCount = 0
# for docIndex in testSet: #classify the remaining items
# wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
# if classifyNB(array(wordVector),p0V,p1V,pSpam) != classList[docIndex]:
# errorCount += 1
# print('the error rate is: ',float(errorCount)/len(testSet))
# return vocabList,p0V,p1V
# def getTopWords(ny,sf):
# import operator
# vocabList,p0V,p1V=localWords(ny,sf)
# topNY=[]; topSF=[]
# for i in range(len(p0V)):
# if p0V[i] > -6.0 : topSF.append((vocabList[i],p0V[i]))
# if p1V[i] > -6.0 : topNY.append((vocabList[i],p1V[i]))
# sortedSF = sorted(topSF, key=lambda pair: pair[1], reverse=True)
# print ("SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**")
# for item in sortedSF:
# print (item[0])
# sortedNY = sorted(topNY, key=lambda pair: pair[1], reverse=True)
# print ("NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**")
# for item in sortedNY:
# print (item[0])
# import feedparser
# ny=feedparser.parse("http://www.nasa.gov/rss/dyn/image_of_the_day.rss")
# sf=feedparser.parse("http://sports.yahoo.com/nba/teams/hou/rss.xml")
# # print(len(ny['entries']))
# # print(ny['entries'][1])
# print(getTopWords(ny,sf))