isMatch("aa","a") → false isMatch("aa","aa") → true isMatch("aaa","aa") → false isMatch("aa", "a*") → true isMatch("aa", ".*") → true isMatch("ab", ".*") → true isMatch("aab", "c*a*b") → true
public class Solution {
public boolean isMatch(String s, String p) {
if (p.length() == 0) {
return s.length() == 0;
}
// length == 1 is the case that is easy to forget.
// as p is subtracted 2 each time, so if original
// p is odd, then finally it will face the length 1
if (p.length() == 1) {
return (s.length() == 1)
&& (p.charAt(0) == s.charAt(0) || p.charAt(0) == '.');
}
// next char is not '*': must match current character
if (p.charAt(1) != '*') {
if (s.length() < 1) {
return false;
} else {
return (s.charAt(0) == p.charAt(0) || p.charAt(0) == '.')
&& isMatch(s.substring(1), p.substring(1));
}
}
// next char is *
while (s.length() > 0
&& (p.charAt(0) == s.charAt(0) || p.charAt(0) == '.')) {
if (isMatch(s, p.substring(2))) {
return true;
}
s = s.substring(1);
}
return isMatch(s, p.substring(2));
}
}
class Solution { public: bool isMatch(string s, string p) { if (p.empty()) return s.empty(); if (p.size() > 1 && p[1] == '*') { return isMatch(s, p.substr(2)) || (!s.empty() && (s[0] == p[0] || p[0] == '.') && isMatch(s.substr(1), p)); } else { return !s.empty() && (s[0] == p[0] || p[0] == '.') && isMatch(s.substr(1), p.substr(1)); } } };聪明
我们也可以用DP来解,定义一个二维的DP数组,其中dp[i][j]表示s[0,i)和p[0,j)是否match,然后有下面三种情况(下面部分摘自这个帖子):
1. P[i][j] = P[i - 1][j - 1], if p[j - 1] != '*' && (s[i - 1] == p[j - 1] || p[j - 1] == '.'); 2. P[i][j] = P[i][j - 2], if p[j - 1] == '*' and the pattern repeats for 0 times; 3. P[i][j] = P[i - 1][j] && (s[i - 1] == p[j - 2] || p[j - 2] == '.'), if p[j - 1] == '*' and the pattern repeats for at least 1 times.
class Solution { public: bool isMatch(string s, string p) { int m = s.size(), n = p.size(); vectorbool>> dp(m + 1, vector<bool>(n + 1, false)); dp[0][0] = true; for (int i = 0; i <= m; ++i) { for (int j = 1; j <= n; ++j) { if (j > 1 && p[j - 1] == '*') { dp[i][j] = dp[i][j - 2] || (i > 0 && (s[i - 1] == p[j - 2] || p[j - 2] == '.') && dp[i - 1][j]); } else { dp[i][j] = i > 0 && dp[i - 1][j - 1] && (s[i - 1] == p[j - 1] || p[j - 1] == '.'); } } } return dp[m][n]; } };