Chef and Churu

Chef and Churu

定义函数f[i]=a[li]+……+a[ri]

两个操作,修改a[i]为k;查询f[l]+……+f[r]

题目链接

#include
using namespace std;
#define Inc(i,L,r) for(register int i=(L);i<=(r);++i)
#define ll unsigned long long
const int N = 1e5+10,Maxsiz = 322;
int n,Q,a[N];
int siz,bl[N];
struct pair{
	int fir,sec;
}s[N];
struct BIT{
	ll c[N];
	#define lb(x) (x)&-(x)
	inline void add(int x,ll k){
		for(;x<=n;x+=lb(x))c[x]+=k;
	}
	inline ll sum(int x){
		ll ret=0;
		for(;x>0;x-=lb(x))ret+=c[x];
		return ret;
	}
}bit,num[Maxsiz];
ll block_sum[Maxsiz];//块和 
inline void init(){
	scanf("%d",&n);
	Inc(i,1,n)scanf("%d",&a[i]);
	Inc(i,1,n)bit.add(i,a[i]);//nlongn 
	
	Inc(i,1,n)scanf("%d%d",&s[i].fir,&s[i].sec);
	siz=sqrt(n);
	Inc(i,1,n)bl[i]=(i-1)/siz+1;
	Inc(i,1,n)block_sum[bl[i]]+=bit.sum(s[i].sec)-bit.sum(s[i].fir-1);
	
	Inc(i,1,n)num[bl[i]].add(s[i].fir,1),num[bl[i]].add(s[i].sec+1,-1);//统计每个位置在块中出现的次数
}
inline void Change(int x,int k){
	Inc(i,1,bl[n])block_sum[i]+=num[i].sum(x)*(k-a[x]);//处理整块 
	bit.add(x,k-a[x]);//处理散块 
	a[x]=k;
}
inline ll Query(int L,int r){
	ll ret=0;
	if(bl[r]-bl[L]<=1){
		Inc(i,L,r)ret+=bit.sum(s[i].sec)-bit.sum(s[i].fir-1);//散块暴力求 
	}else {
		Inc(i,L,bl[L]*siz)ret+=bit.sum(s[i].sec)-bit.sum(s[i].fir-1);
		Inc(i,bl[L]+1,bl[r]-1)ret+=block_sum[i];//整块直接加 
		Inc(i,(bl[r]-1)*siz+1,r)ret+=bit.sum(s[i].sec)-bit.sum(s[i].fir-1);
	}return ret;
}
inline void solv(){
	scanf("%d",&Q);
	while(Q--){
		int op,L,r;scanf("%d%d%d",&op,&L,&r);
		if(op==1)Change(L,r);
		else cout<

 

你可能感兴趣的:(数据结构,分块)