Graham求凸包

作者自转,原文链接:http://blog.csdn.net/nmlh7448...

正文

  网上已经有很多关于Graham-scan的资料了。
  Graham扫描法的时间复杂度为O(nlogn),是通过维持一个关于候选点的栈来解决凸包问题。输入的每个点都被压入栈一次,其中不在凸包上的点被弹出。当算法终止时,栈中仅包含凸包中的点,并且从栈底到栈顶按逆时针顺序排列。(摘自算法导论)
  首先要对输入的点进行排序。排序有两种,一种是极角序,一种是水平序。极角序容易理解但是不容易实现,水平序容易实现但是不容易理解。排序调用algorithm里的sort()函数即可,关键的是写好cmp函数。
  首先说极角序。选择最“左下”的点为基点,即选择纵坐标最小的点,有多个时选择其中横坐标最小的点,因为这个点一定在凸包上。设基点为K,然后对比排序剩下的点A、B,向量KA和向量KB与x轴的角(以逆时针为正)的大小。排序完后,建立一个栈,将基点与前两个点压入,然后扫描到第n个点结束。由于凸包一定是凸多边形,所以比较方式就是,取当前点X,栈顶点Y,次栈顶点Z,假设新加入的点在凸包上,那么需要考虑栈顶点是否也在凸包上,如果在,那么向量YX一定在向量ZY的逆时针方向,使用向量叉积的正负就可以判断。
  然后说水平序。水平序直接按坐标排序即可,实现非常方便。在扫描的时候和极角序方法一样。但是水平序需要注意右链和左链问题。因为水平序的排序方式,第一个点一定在最下方,第n个点一定在最上方,这样从1扫描到n的时候由于扫描顺序的问题,只有右边在凸包上的点被保留,所以是完整凸包被1、n两点的线段分开后的右半部分(自己模拟一下便可理解),所以需要再扫描左链。。然后从n到1扫描左链即可。值得注意的是,右链扫描完后,栈顶元素就是n,所以开始时为了避免重复只将n-1点压入栈,从n-2循环到1.

极角序:

#include  
#include  
#include  
#include  
#include  
#include  
#include  
#define pow2(a) a*a  
#define max(a,b) ((a>b)? a:b)  
using namespace std;  
long n;  
struct dian  
{
    char a;  
    long x,y;
} d[1000];  
stack zhan;  
dian dd;  
  
long chaji(dian a,dian b,dian c)  
{
    return ((a.x-c.x)*(b.y-c.y)-(b.x-c.x)*(a.y-c.y));
}  
  
double juli(dian a,dian b)  
{
    return sqrt(pow2(a.x-b.x)+pow2(a.y-b.y));
}  
  
bool cmp(dian a,dian b)  
{
    long s=chaji(a,b,d[0]);  
    if(s>0||((s==0)&&(juli(d[0],a)=0)
            {
                zhan.push(c);//包括共线点,若为>,则是不包括共线点。  
                break;
            }
        }  
        zhan.push(i);
    }
}  
  
int main()  
{
    cin>>n;  
    long h;  
    for(long i=0;i>d[i].a>>d[i].x>>d[i].y;  
        if(i==0)
        {
            dd=d[i];  
            h=0;  
            continue;
        }  
        else
        {
            if(d[i].x==dd.x)
            {
                if(d[i].y

水平序:

#include  
#include  
#include  
#include  
#include  
#include  
#define max(a,b) ((a>b)? a:b)  
using namespace std;  
long n,m;  
struct dian  
{
    long x,y;  
    char a;
} d[100050];  
stack zhan;  
dian p1,p2;  
  
bool cmp(dian a,dian b)  
{
    if(a.y==b.y) return a.x=1;i--)
    {
        while(1)
        {
            if(zhan.size()==w) break;  
            a=zhan.top();  
            zhan.pop();  
            b=zhan.top();  
            p1.x=d[a].x-d[b].x;  
            p1.y=d[a].y-d[b].y;  
            p2.x=d[i].x-d[a].x;  
            p2.y=d[i].y-d[a].y;  
            if(chaji(p1,p2)<=0)
            {
                zhan.push(a);//包括共线点,若为“<”,则不包括   
                break;
            }
        }  
        zhan.push(i);
    }
}  
  
int main()  
{
    cin>>n;  
    for(long i=1;i<=n;i++) cin>>d[i].a>>d[i].x>>d[i].y;  
    graham();  
    while(!zhan.empty())
    {
        cout<

最后关于共线点,一般是不包括的,这样可以减少凸包里点的个数,也算一个小优化。

你可能感兴趣的:(数据结构,算法,计算几何)