slam打脸入门知识

还是说视觉slam吧。

先说视觉这块,首先射影几何的一些内容相机模型,单视几何,双视几何和多视几何。这些内容可以在Multiple View Geometry in Computer Vision这本书中找到。英文版的,另外中科院的吴福朝编著的“计算机视觉中的数学方法”也很好,涵盖了上述了MVG in CV book中的大部分内容,强烈安利。

然后是一些视觉特征,这方面就是一些特征,描述子,匹配相关等。见SIFT,ORB、BRISK、SURF等文章。

数学方面首先是三维空间的刚体运动,参考《机器人学(第2版)》 蔡自兴【摘要 书评 试读】图书。

关于优化,SLAM中的优化方法十分基本,参考高斯牛顿,LM,结合稀疏线性代数。其实用的时候会使用一种g2o的图优化库或者ceres。参考文章 g2o: A General Framework for Graph Optimization
ais.informatik.uni-freiburg.de

最难的应该算是李群和李代数,这方面可以参考book [state estimation for Robotics](asrl.utias.utoronto.ca/)。当然不想看书的话可以参考博客李代数 - 标签 - 半闲居士 - 博客园。

为了看论文的时候能够比较流畅,还应该具备一些概率论的知识,这里推荐book[Probabilistic Robotics](probabilistic-robotics.org) [pdf](docs.ufpr.br/~danielsan)

话说高翔博士近期完成一本SLAM的入门book,有理论有实践,写的不错,推荐。他包含了上述在视觉slam需要的所有基础知识,真是造福大众啊。详细研读此书,以后读各种论文就不会显得那么吃力了吧。最后列举一些玩slam的一些必备工具和相关资源。

tools

1. ubuntu, cmake, bash, vim, qt(optional).
2. OpenCV install, read the opencv reference manual and tutorial
3. ros, [install](ROS/Installation - ROS Wiki), [tutorial}(ROS/Tutorials - ROS Wiki).
4. python. 可以使用pycharm,作为IDE.
为什么使用ubuntu?因为大家的代码,全是用linux,而且很多使用ros的,ros一定是要Linux的,同时还要cmake。Ubuntu是比较适合初学Linux的人,非常好用。

somethind about Calibration

1. [opencv camera Calibration](docs.opencv.org/2.4/mod)
2. [matlab camera Calibration toolbox](Camera Calibration Toolbox for Matlab)
3. [svo camera Calibration](uzh-rpg/rpg_svo)
4. [ros wiki camera Calibration](camera_calibration - ROS Wiki)
为什么要标定相机呢,因为slam的模型中假设 相机的内参数是已知的,因此有了这个内参数我们才能正确的初始化slam系统。

slam open sources

1. [svo](uzh-rpg/rpg_svo)
2. [orb slam](raulmur/ORB_SLAM2)
3. [ar_tracker_alvar githun page](sniekum/ar_track_alvar) [ros page](ar_track_alvar - ROS Wiki)
4. [ros ptam](ethzasl_ptam - ROS Wiki),原始代码不支持ros, 这里给出ros版本的代码. 原始[代码](Oxford-PTAM/PTAM-GPL)[网站](Parallel Tracking and Mapping for Small AR Workspaces (PTAM))
5. DSO JakobEngel/dso

ros books

1. Learning ROS for Robotics Programming
2. 机器人操作系统(ROS)浅析
3. ros by example http://www.lulu.com/shop/http://www.lulu.com/shop/r-patrick-goebel/ros-by-example-indigo-volume-1/ebook/product-23032353.html

some blogs about ros

1. 古月居 - 怕什么真理无穷,进一寸有一寸的欢喜


SLAM基础学习

1. [Multiple View Geometry in Computer Vision](Multiple View Geometry in Computer Vision)。
2. Sparse Matrix [Sparse Non-Linear Least Squares in C/C++](Sparse Non-Linear Least Squares in C/C++)
3. [openSLAM](openslam.org/)
4. dataset [tum](RGB-D SLAM Dataset and Benchmark)
5. [PCL](PointCloudLibrary/pcl)
6. [opencv](OpenCV | OpenCV)

推荐阅读的书

1. [Multiple View Geometry in Computer Vision](Multiple View Geometry in Computer Vision)
2. [Probabilistic Robotics](probabilistic-robotics.org) [pdf](docs.ufpr.br/~danielsan)
3. [state estimation for Robotics](asrl.utias.utoronto.ca/)
4. [Quaternion kinematics for the error-state KF](iri.upc.edu/people/jsol)
5. 凸优化,web.stanford.edu/~boyd/
6. 线性系统理论,Chi-Tsong Chen: 9780199959570: Amazon.com: Books
7. An Invitation to 3-D Vision,eecis.udel.edu/~cer/arv
8. Rigid Body Dynamics,authors.library.caltech.edu

paper about vision slam

- Georg Klein and David Murray, "Parallel Tracking and Mapping for Small AR Workspaces", In Proc. International Symposium on Mixed and Augmented Reality (ISMAR'07, Nara).
- D. Scaramuzza, F. Fraundorfer, "Visual Odometry: Part I - The First 30 Years and Fundamentals IEEE Robotics and Automation Magazine", Volume 18, issue 4, 2011.
- F. Fraundorfer and D. Scaramuzza, "Visual Odometry : Part II: Matching, Robustness, Optimization, and Applications," in IEEE Robotics & Automation Magazine, vol. 19, no. 2, pp. 78-90, June 2012.
doi: 10.1109/MRA.2012.2182810
- A Kalman Filter-Based Algorithm for IMU-Camera Calibration Observability Analysis and Performance Evaluation
- SVO- Fast Semi-Direct Monocular Visual Odometry
- [eth zasl sensor](ethzasl_sensor_fusion - ROS Wiki),
- Stephan Weiss. Vision Based Navigation for Micro Helicopters PhD Thesis, 2012 pdf
- Stephan Weiss, Markus W. Achtelik, Margarita Chli and Roland Siegwart. Versatile Distributed Pose Estimation and Sensor Self-Calibration for Autonomous MAVs. in IEEE International Conference on Robotics and Automation (ICRA), 2012. pdf
- Stephan Weiss, Davide Scaramuzza and Roland Siegwart, Monocular-SLAM–based navigation for autonomous micro helicopters in GPS-denied environments, Journal of Field Robotics (JFR), Vol. 28, No. 6, 2011, 854-874. pdf
- Stephan Weiss and Roland Siegwart. Real-Time Metric State Estimation for Modular Vision-Inertial Systems. in IEEE International Conference on Robotics and Automation (ICRA), 2011. pdf
- Simon Lynen, Markus Achtelik, Stephan Weiss, Margarita Chli and Roland Siegwart, A Robust and Modular Multi-Sensor Fusion Approach Applied to MAV Navigation. in Proc. of the IEEE/RSJ Conference on - - Intelligent Robots and Systems (IROS), 2013. pdf
- [orb slam]
- Raúl Mur-Artal, J. M. M. Montiel and Juan D. Tardós. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Transactions on Robotics, vol. 31, no. 5, pp. 1147-1163, 2015. (2015 IEEE Transactions on Robotics Best Paper Award). PDF.
- Dorian Gálvez-López and Juan D. Tardós. Bags of Binary Words for Fast Place Recognition in Image Sequences. IEEE Transactions on Robotics, vol. 28, no. 5, pp. 1188-1197, 2012.

最后来张脑图

你可能感兴趣的:(slam打脸入门知识)