一、介绍
本demo由Faster R-CNN官方提供,我只是在官方的代码上增加了注释,一方面方便我自己学习,另一方面贴出来和大家一起交流。
该文件中的函数的主要目的是训练整个Faster R-CNN网络。
二、代码以及注释
# coding=utf-8
# --------------------------------------------------------
# Fast R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------
"""Train a Fast R-CNN network."""
from fast_rcnn.config import cfg
import gt_data_layer.roidb as gdl_roidb
import roi_data_layer.roidb as rdl_roidb
from roi_data_layer.layer import RoIDataLayer
from utils.timer import Timer
import numpy as np
import os
import tensorflow as tf
import sys
from tensorflow.python.client import timeline
import time
class SolverWrapper(object):
"""
A simple wrapper around Caffe's solver.
This wrapper gives us control over the snapshot process, which we
use to unnormalize the learned bounding-box regression weights.
对Caffe的Solver进行了简单的封装。
这个封装可以让我们控制snapshot过程,在snapshot过程中,我们对学习得到的bbox回归权重进行了去规范化(unnormalize)。
"""
def __init__(self, sess, saver, network, imdb, roidb, output_dir, pretrained_model=None):
"""Initialize the SolverWrapper."""
# 使用的Faster RCNN网络结构
self.net = network
# 图片数据集
self.imdb = imdb
# rois数据集
self.roidb = roidb
# 网络结构和权重保存输出目录
self.output_dir = output_dir
# 预训练文件模型路径
self.pretrained_model = pretrained_model
print 'Computing bounding-box regression targets...'
# cfg.TRAIN.BBOX_REG默认为True
if cfg.TRAIN.BBOX_REG:
# 不同类的均值与方差,返回格式means.ravel(), stds.ravel()
self.bbox_means, self.bbox_stds = rdl_roidb.add_bbox_regression_targets(roidb)
print 'done'
# For checkpoint
self.saver = saver
def snapshot(self, sess, iter):
"""
Take a snapshot of the network after unnormalizing the learned
bounding-box regression weights. This enables easy use at test-time.
在对学习的边界框回归权重进行非标准化(unnormalize)后获取网络snapshot。
这样可以在测试使用时比较方便
"""
net = self.net
if cfg.TRAIN.BBOX_REG and net.layers.has_key('bbox_pred'):
# save original values
# 将原来的值保存下来
with tf.variable_scope('bbox_pred', reuse=True):
weights = tf.get_variable("weights")
biases = tf.get_variable("biases")
orig_0 = weights.eval()
orig_1 = biases.eval()
# scale and shift with bbox reg unnormalization; then save snapshot
# 更新weights和bias
weights_shape = weights.get_shape().as_list()
sess.run(net.bbox_weights_assign,
feed_dict={net.bbox_weights: orig_0 * np.tile(self.bbox_stds, (weights_shape[0], 1))})
sess.run(net.bbox_bias_assign,
feed_dict={net.bbox_biases: orig_1 * self.bbox_stds + self.bbox_means})
# 如果网络保存的目录不存在则重新创建一个
if not os.path.exists(self.output_dir):
os.makedirs(self.output_dir)
# 中缀
infix = ('_' + cfg.TRAIN.SNAPSHOT_INFIX
if cfg.TRAIN.SNAPSHOT_INFIX != '' else '')
# 文件名的创建
filename = (cfg.TRAIN.SNAPSHOT_PREFIX + infix +
'_iter_{:d}'.format(iter + 1) + '.ckpt')
filename = os.path.join(self.output_dir, filename)
# 保存网络
self.saver.save(sess, filename)
print 'Wrote snapshot to: {:s}'.format(filename)
# 恢复原始的状态
if cfg.TRAIN.BBOX_REG and net.layers.has_key('bbox_pred'):
with tf.variable_scope('bbox_pred', reuse=True):
# restore net to original state
sess.run(net.bbox_weights_assign, feed_dict={net.bbox_weights: orig_0})
sess.run(net.bbox_bias_assign, feed_dict={net.bbox_biases: orig_1})
# smooth l1方法
def _modified_smooth_l1(self, sigma, bbox_pred, bbox_targets, bbox_inside_weights, bbox_outside_weights):
"""
ResultLoss = outside_weights * SmoothL1(inside_weights * (bbox_pred - bbox_targets))
SmoothL1(x) = 0.5 * (sigma * x)^2, if |x| < 1 / sigma^2
|x| - 0.5 / sigma^2, otherwise
"""
# 计算sigma^2
sigma2 = sigma * sigma
# 计算所需要处理的x的矩阵,这里利用了之前返回的inside weights。
inside_mul = tf.multiply(bbox_inside_weights, tf.subtract(bbox_pred, bbox_targets))
# 获取inside mul矩阵中小于 1 / sigma ^ 2的信息,在每个位置设置为True 或者False。然后转换为1.0或者0.0。
smooth_l1_sign = tf.cast(tf.less(tf.abs(inside_mul), 1.0 / sigma2), tf.float32)
# 计算上面公式中的第一个式子,这里并没有关注到后面的判断条件。
smooth_l1_option1 = tf.multiply(tf.multiply(inside_mul, inside_mul), 0.5 * sigma2)
# 计算第二个式子。
smooth_l1_option2 = tf.subtract(tf.abs(inside_mul), 0.5 / sigma2)
# 这里根据上面产生的smooth l1 sign条件产生最后的结果,就是在这里才综合考虑后面的判断条件
smooth_l1_result = tf.add(tf.multiply(smooth_l1_option1, smooth_l1_sign),
tf.multiply(smooth_l1_option2, tf.abs(tf.subtract(smooth_l1_sign, 1.0))))
# 和outside weights相乘并返回最后的结果。
outside_mul = tf.multiply(bbox_outside_weights, smooth_l1_result)
return outside_mul
def train_model(self, sess, max_iters):
"""Network training loop."""
data_layer = get_data_layer(self.roidb, self.imdb.num_classes)
# RPN
# classification loss
# rpn-data数据都是在anchor target layer中产生
# 将'rpn_cls_score_reshape'层的输出(1, n,n,18)reshape为(-1, 2), 其中2为前景与背景的多分类得分()
rpn_cls_score = tf.reshape(self.net.get_output('rpn_cls_score_reshape'), [-1, 2])
# 将labels展开成1维
rpn_label = tf.reshape(self.net.get_output('rpn-data')[0], [-1])
# 把rpn_label不等于-1对应引索的rpn_cls_score取出,重新组合成rpn_cls_score
rpn_cls_score = tf.reshape(tf.gather(rpn_cls_score, tf.where(tf.not_equal(rpn_label, -1))), [-1, 2])
# 把rpn_label不等于 - 1对应引索的rpn_label取出,重新组合成rpn_label
rpn_label = tf.reshape(tf.gather(rpn_label, tf.where(tf.not_equal(rpn_label, -1))), [-1])
# labels的交叉熵损失。
# tf.nn.sparse_softmax_cross_entropy_with_logits返回的是一个向量,最后需要通过规约操作生成损失数值。
rpn_cross_entropy = tf.reduce_mean(
tf.nn.sparse_softmax_cross_entropy_with_logits(logits=rpn_cls_score, labels=rpn_label))
# bounding box regression L1 loss
# 获取RPN网络产生的bbox回归目标
rpn_bbox_pred = self.net.get_output('rpn_bbox_pred')
# 获取rpn-data层产生的bbox回归目标和inside weights和outside weights,并将通道顺序更改为[N, H, W, C]
rpn_bbox_targets = tf.transpose(self.net.get_output('rpn-data')[1], [0, 2, 3, 1])
rpn_bbox_inside_weights = tf.transpose(self.net.get_output('rpn-data')[2], [0, 2, 3, 1])
rpn_bbox_outside_weights = tf.transpose(self.net.get_output('rpn-data')[3], [0, 2, 3, 1])
# 计算smooth l1的结果
rpn_smooth_l1 = self._modified_smooth_l1(3.0, rpn_bbox_pred, rpn_bbox_targets, rpn_bbox_inside_weights,
rpn_bbox_outside_weights)
# 对smooth l1的结果进行归约操作,因为smooth l1返回的结果是一个矩阵。
rpn_loss_box = tf.reduce_mean(tf.reduce_sum(rpn_smooth_l1, reduction_indices=[1, 2, 3]))
# R-CNN
# classification loss
# roi-data由proposal target layer产生
# 获取每个roi的预测的分类概率分布
cls_score = self.net.get_output('cls_score')
# 获取每个roi的实际label,并展开成一维数组
label = tf.reshape(self.net.get_output('roi-data')[1], [-1])
# 计算rois分类的交叉熵损失
cross_entropy = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=cls_score, labels=label))
# bounding box regression L1 loss
# 获取Fast RCNN网络产生的预测的bbox回归目标
bbox_pred = self.net.get_output('bbox_pred')
# 获取roi-data层bbox的回归目标以及inside weights和outside weights。
bbox_targets = self.net.get_output('roi-data')[2]
bbox_inside_weights = self.net.get_output('roi-data')[3]
bbox_outside_weights = self.net.get_output('roi-data')[4]
# 计算smooth l1的结果
smooth_l1 = self._modified_smooth_l1(1.0, bbox_pred, bbox_targets, bbox_inside_weights, bbox_outside_weights)
# 归约smooth l1的计算结果。
loss_box = tf.reduce_mean(tf.reduce_sum(smooth_l1, reduction_indices=[1]))
# final loss
# 网络的总损失函数是上述四个损失值的相加
loss = cross_entropy + loss_box + rpn_cross_entropy + rpn_loss_box
# optimizer and learning rate
# 全局的步数
global_step = tf.Variable(0, trainable=False)
# 学习率设置
lr = tf.train.exponential_decay(cfg.TRAIN.LEARNING_RATE, global_step,
cfg.TRAIN.STEPSIZE, 0.1, staircase=True)
# momentum设置,默认值为0.9
momentum = cfg.TRAIN.MOMENTUM
# 优化器设置
train_op = tf.train.MomentumOptimizer(lr, momentum).minimize(loss, global_step=global_step)
# iintialize variables
# 初始化所有变量
sess.run(tf.global_variables_initializer())
# 如果提供了预训练模型,则加载预训练模型
if self.pretrained_model is not None:
print ('Loading pretrained model '
'weights from {:s}').format(self.pretrained_model)
self.net.load(self.pretrained_model, sess, self.saver, True)
last_snapshot_iter = -1
# 计时器
timer = Timer()
# 进入循环迭代训练
for iter in range(max_iters):
# get one batch
# 获取一个batch信息
blobs = data_layer.forward()
# Make one SGD update
# 准备feed进网络中的数据
feed_dict = {self.net.data: blobs['data'],
self.net.im_info: blobs['im_info'],
self.net.keep_prob: 0.5,
self.net.gt_boxes: blobs['gt_boxes']}
# cfg.TRAIN.DEBUG_TIMELINE默认为False。不建议设置为True,否则可能会出错。下同。
run_options = None
run_metadata = None
if cfg.TRAIN.DEBUG_TIMELINE:
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
# 记录开始时间戳
timer.tic()
# 进行一次训练
rpn_loss_cls_value, rpn_loss_box_value, loss_cls_value, loss_box_value, _ = sess.run(
[rpn_cross_entropy, rpn_loss_box, cross_entropy, loss_box, train_op],
feed_dict=feed_dict,
options=run_options,
run_metadata=run_metadata)
# 记录结束时间戳
timer.toc()
if cfg.TRAIN.DEBUG_TIMELINE:
trace = timeline.Timeline(step_stats=run_metadata.step_stats)
trace_file = open(str(long(time.time() * 1000)) + '-train-timeline.ctf.json', 'w')
trace_file.write(trace.generate_chrome_trace_format(show_memory=False))
trace_file.close()
# 显示训练的阶段性结果,主要为各种loss值。
if (iter + 1) % (cfg.TRAIN.DISPLAY) == 0:
print 'iter: %d / %d, total loss: %.4f, rpn_loss_cls: %.4f, rpn_loss_box: %.4f, loss_cls: %.4f, loss_box: %.4f, lr: %f' % \
(iter + 1, max_iters, rpn_loss_cls_value + rpn_loss_box_value + loss_cls_value + loss_box_value,
rpn_loss_cls_value, rpn_loss_box_value, loss_cls_value, loss_box_value, lr.eval())
print 'speed: {:.3f}s / iter'.format(timer.average_time)
# 进行网络的snapshot获取并保存整个Faster RCNN网络。
if (iter + 1) % cfg.TRAIN.SNAPSHOT_ITERS == 0:
last_snapshot_iter = iter
self.snapshot(sess, iter)
# 结束的时候再进行依次snapshot获取和网络保存
if last_snapshot_iter != iter:
self.snapshot(sess, iter)
def get_training_roidb(imdb):
"""
Returns a roidb (Region of Interest database) for use in training.
获取一个训练时使用的roidb。
"""
if cfg.TRAIN.USE_FLIPPED:
print 'Appending horizontally-flipped training examples...'
imdb.append_flipped_images()
print 'done'
print 'Preparing training data...'
if cfg.TRAIN.HAS_RPN:
if cfg.IS_MULTISCALE:
gdl_roidb.prepare_roidb(imdb)
else:
rdl_roidb.prepare_roidb(imdb)
else:
rdl_roidb.prepare_roidb(imdb)
print 'done'
return imdb.roidb
def get_data_layer(roidb, num_classes):
"""
return a data layer.
获取并返回一个一个数据层
"""
if cfg.TRAIN.HAS_RPN:
if cfg.IS_MULTISCALE:
layer = GtDataLayer(roidb)
else:
layer = RoIDataLayer(roidb, num_classes)
else:
layer = RoIDataLayer(roidb, num_classes)
return layer
def filter_roidb(roidb):
"""
Remove roidb entries that have no usable RoIs.
移除没有可用ROIS的roidb条目
"""
def is_valid(entry):
# Valid images have:
# (1) At least one foreground RoI OR
# (2) At least one background RoI
overlaps = entry['max_overlaps']
# find boxes with sufficient overlap
fg_inds = np.where(overlaps >= cfg.TRAIN.FG_THRESH)[0]
# Select background RoIs as those within [BG_THRESH_LO, BG_THRESH_HI)
bg_inds = np.where((overlaps < cfg.TRAIN.BG_THRESH_HI) &
(overlaps >= cfg.TRAIN.BG_THRESH_LO))[0]
# image is only valid if such boxes exist
valid = len(fg_inds) > 0 or len(bg_inds) > 0
return valid
num = len(roidb)
filtered_roidb = [entry for entry in roidb if is_valid(entry)]
num_after = len(filtered_roidb)
print 'Filtered {} roidb entries: {} -> {}'.format(num - num_after,
num, num_after)
return filtered_roidb
def train_net(network, imdb, roidb, output_dir, pretrained_model=None, max_iters=40000):
"""
Train a Fast R-CNN network.
:param network: Faster RCNN训练的网络结构
:param imdb: 图片数据集
:param roidb: rois数据集
:param output_dir: 网络权重文件的保存目录
:param pretrained_model: 预训练网络权重文件路径
:param max_iters: 最大迭代次数
:return: None
"""
# 筛选roidb
roidb = filter_roidb(roidb)
# tf网络保存器
saver = tf.train.Saver(max_to_keep=100)
# tf会话
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
# solver封装
sw = SolverWrapper(sess, saver, network, imdb, roidb, output_dir, pretrained_model=pretrained_model)
print 'Solving...'
# 训练网络
sw.train_model(sess, max_iters)
print 'done solving'