- Multi-Graph Fusion and Learning for RGBT Image Saliency Detection
宇来风满楼
SOD人工智能算法深度学习机器学习神经网络
theSLICalgorithmisperformedonthefusedRGB-Timage辅助信息作者未提供代码
- 【Pytorch】Visualization of Feature Maps(4)——Saliency Maps
bryant_meng
pytorch人工智能pythonsaliencymaps
学习参考来自SaliencyMaps的原理与简单实现(使用Pytorch实现)https://github.com/wmn7/ML_Practice/tree/master/2019_07_08/Saliency%20MapsSaliencyMaps原理《DeepInsideConvolutionalNetworks:VisualisingImageClassificationModelsandS
- JMSA(Jacobian Saliency Map Attack)算法源码解析
Sankkl1
AI安全算法python神经网络
论文链接:https://arxiv.org/abs/1511.07528v1源码出处:https://github.com/Harry24k/adversarial-attacks-pytorch/tree/master解析FGSM、PGD等算法生成的对抗样本的扰动方向都是损失函数的梯度方向(可以参考本人以前的博客),该论文生成的对抗样本的扰动方向是目标类别标记的预测值的梯度方向,作者将这个梯度
- 显著图(Saliency map)
KingsMan666
图像算法计算机视觉图像处理opencv
这里写目录标题概念应用算法传统算法静态显著性算法:对数光谱(SpectralResidual):静态显著性算法:细粒方法(FineGrained):人工智能算法基于眼动仪预测显著性区域方法积分梯度方法对比学习概念在计算机视觉中,显著图(Saliencymap)是一种突出人们眼睛首先关注的区域的图像。显著图的目标是反映像素对人类视觉系统的重要程度。显著性是图像的突出部分,我们的大脑会特别关注这个部分
- 基于显著性的无人机多光谱图像语义杂草检测与分类
毕竟是shy哥
杂草检测无人机分类数据挖掘
Saliency-BasedSemanticWeedsDetectionandClassificationUsingUAVMultispectralImaging(2023)摘要1、介绍2、相关工作2.1监督学习2.2半监督学习2.3无监督学习3、方法3.1贡献3.2PC/BC-DIMNEURALNETWORK(预测编码/有偏竞争-分裂输入调制)4、结论5、算法流程新词1:栽培杂草控制解释1:栽培
- 《Deep RGB-D Saliency Detection with Depth-Sensitive Attentionand Automatic Multi-Modal Fusion》阅读理解
yuehuihui00
显著性目标检测
转载请注明出处。作者:PengSunWenhuZhangHuanyuWangSongyuanLiXiLi论文地址:[2103.11832]DeepRGB-DSaliencyDetectionwithDepth-SensitiveAttentionandAutomaticMulti-ModalFusion(arxiv.org)2021CVPR作者提出了一个具有深度敏感注意力和自动多模态融合的深度RG
- 【论文精读】一石二鸟:Series Saliency for Accurate and Interpretable Multivariate Time Series Forecasting
程序媛小哨
时序预测机器学习
TwoBirdswithOneStone:SeriesSaliencyforAccurateandInterpretableMultivariateTimeSeriesForecastingAbstractItisimportantyetchallengingtoperformaccurateandinterpretabletimeseriesforecasting.Thoughdeeplearn
- 论文阅读——Texture-guided Saliency Distilling for Unsupervised Salient Object Detection
醋酸洋红就是我
论文阅读论文阅读目标检测人工智能
目录基本信息标题目前存在的问题改进网络结构另一个写的好的参考基本信息期刊CVPR年份2023论文地址https://browse.arxiv.org/pdf/2207.05921.pdf代码地址https://github.com/moothes/A2S-v2标题基于纹理引导的显著性提取的无监督显著性目标检测目前存在的问题大多数基于深度学习(Deeplearning,DL-based)的方法都是基
- Saliency maps
MTandHJ
neuralnetworks
文章目录问题细节变量$S_c(I)$扩展代码DeepInsideConvolutionalNetworks:VisualisingImageClassificationModelsandSaliencyMaps问题这篇文章和ZFnet相似,旨在研究网络可视化的问题,根据分裂网络最后的向量来反推出最原始的图像,如果假设输入(input)是III,而输入图像对应的标签是ccc,而分类器的得分是Sc(I)
- Pyramid Grafting Network for One-Stage High Resolution Saliency Detection
看到我请叫我去学java吖
深度学习人工智能计算机视觉
Abstract背景现有的SOD均多是以低分辨率图像作为输入由于采样深度与感受野之间存在矛盾,所以现有的为低分辨率图像设计的模型,在高分辨率图像上无法有精准的效果提出金字塔移植网络(PGNet):Encoder-Decoder架构,在Encoder中建立两条分支(Swin-Transformer及ResNet-18)提取特征,提出基于注意力的跨模型移植模块(CMGM)结合两条分支的特征,设计注意力
- 论文阅读——Pyramid Grafting Network for One-Stage High Resolution Saliency Detection
醋酸洋红就是我
论文阅读
目录基本信息标题目前存在的问题改进网络结构CMGM模块解答为什么要用这两个编码器进行编码另一个写的好的参考基本信息期刊CVPR年份2022论文地址https://arxiv.org/pdf/2204.05041.pdf代码地址https://github.com/iCVTEAM/PGNet标题金字塔嫁接网络的一级高分辨率显著性检测目前存在的问题cosod用于低分辨率图片下表现良好,高分辨率下(10
- 【论文翻译】Recurrent Saliency Transformation Network: Incorporating Multi-Stage Visual Cues for Small ...
hy_238f
项目地址:https://github.com/twni2016/OrganSegRSTN_PyTorch完整的图、表及引用见原文,用于学习记录,与有需要的人分享。摘要我们的目标是从腹部CT扫描中分割小的器官(如胰腺)。由于目标在输入图像中往往占据相对较小的区域,深度神经网络容易被复杂多变的背景所混淆。为了缓解这种情况,研究人员提出了一种由粗到细的方法[46],该方法使用从第一个(粗)阶段的预测来
- 在vscode中做实验出现的bug......
TerryBlog
Debugvscodebug
1、python如何调用opencv中的saliency模块 如果你已经安装了opencv-python的库,但是调用cv2.saliency方法时出现了如下的报错:module‘cv2.saliency’hasnoattribute‘StaticSaliencySpectralResidual_create’ 这时你只需要卸载opencv-python库,安装opencv-contrib-p
- 基于显著性的图像分割 Saliency Based Image Segmentation
加刘景长
通常我们看到一幅图像的时候,我们都会关注于图像中的某一点上。这有可能是一个人,一个建筑物或者甚至是一个水桶。图像的清晰部分几乎没有什么意义,这些部分在图像中通常的特点是缺少关注点、颜色单调和纹理平滑。当这样一类图像出现的时候,它们是从图像剩余部分分割出感兴趣目标的理想图像。这篇文章就探索了这类显著性图像的分割。显著性图像的例子。左边的水桶和右边的人就是感兴趣的目标。这个项目最初来源于对于发掘一个自
- cs231n assignment3 q1Network Visualization
理智点
cs231npython开发语言
文章目录嫌啰嗦直接看代码Q1:NetworkVisualizationcompute_saliency_maps题面解析代码输出make_fooling_image题面解析代码输出class_visualization_update_step题面解析代码输出结语嫌啰嗦直接看代码Q1:NetworkVisualizationcompute_saliency_maps题面这部分的任务需要我们计算图像的
- 显著性检测saliency detection代码实现
FrenchOldDriver
图像处理深度学习算法pythonnumpy深度学习
数学原理不具体展开直接上代码importcv2importmatplotlib.pyplotaspltsaliency=cv2.saliency.StaticSaliencyFineGrained_create()(_,sm)=saliency.computeSaliency(img)plt.imshow(sm,cmap=plt.cm.hot)就可以实现如下效果的变换也可以利用预训练模型生成mod
- Note《Boundary finding based multi-focus image fusion through multi-scale morphological focus-measure》
sunsimple
这篇文章的整体思路首先是得到清晰块,不清晰块和含有清晰区域和不清晰区域的块,然后再在含有清晰区域和不清晰区域的块中确定边界。最后再将所有图像的清晰块相结合,边界区域相结合,最后得到融合后的图像。其主要思路是:Step1:定义一种清晰度描述,MSMFM,一种多尺度下形态学梯度求和的结果。如图1:图1Step2:基于saliency_map确定清晰块,不清晰块及含有清晰区域和不清晰区域的块。并在清晰区
- 【论文精读】TMI2021医学图像分割 SMU-Net
LANG_C_
论文精读深度学习神经网络机器学习计算机视觉人工智能
TMI2021医学图像分割论文SMU-Net:Saliency-guidedMorphology-awareU-NetforBreastLesionSegmentationinUltrasoundImageSMU-Net:显著引导形态感知U-Net用于超声图像乳腺病变分割目录TMI2021医学图像分割论文摘要一、主要亮点二、METHOD1.SaliencyMapGeneration1.1Low-l
- 医学论文笔记:TMI2021 SMU-Net: Saliency-Guided Morphology-Aware U-Net for Breast Lesion Segmentation ...
_击空明兮溯流光_
计算机视觉人工智能
乳腺超声分割:文章指出周围组织(即背景)和病变区域(即前景)之间的模式复杂性和强度相似性给病变分割带来了挑战。考虑到背景中包含如此丰富的纹理信息,很少有方法尝试探索和利用背景显着表示来辅助前景分割。此外,BUS图像的其他特征,即1)低对比度外观和模糊边界,以及2)病灶形状和位置变化显着,也增加了准确病灶分割的难度。文中提出了saliency-guidedmorphology-awareU-Net(
- 论文阅读
普通网友
人工智能大数据
LearningtoPromoteSaliencyDetectorshttps://github.com/lartpang/M...缩写标注:SD:SaliencyDetectionZSL:Zero-ShotLearning关键内容:没有训练直接将图像映射到标签中的DNN。相反,将DNN拟合为一个嵌入函数,以将像素和显著/背景区域的属性映射到度量空间。显着/背景区域的属性被映射为度量空间中的锚点。
- 【显著目标检测论文】Pyramid Feature Attention Network for Saliency detection
一根大白菜
显著目标检测论文目标检测深度学习计算机视觉
2019发表于CVPR的一篇显著目标检测论文论文原文代码地址摘要显著性检测是计算机视觉的基本挑战之一。如何提取有效的特征是显著性检测的一个关键点。最近的方法主要是不加区分地采用融合多尺度卷积特征。然而,并非所有的特征都对显著性检测有用,有些甚至会造成干扰。为了解决这个问题,我们提出了金字塔特征注意力网络,以关注有效的高级背景特征和低级空间结构特征。首先,我们设计了上下文感知的金字塔特征提取(CPF
- 显著性目标检测之Learning to Promote Saliency Detectors
有为少年
深度学习#显著性检测深度学习pytorch神经网络
LearningtoPromoteSaliencyDetectors论文阅读旧文重发https://github.com/lartpang/Machine-Deep-Learning缩写标注:SD:SaliencyDetectionZSL:Zero-ShotLearning关键内容:没有训练直接将图像映射到标签中的DNN。相反,将DNN拟合为一个嵌入函数,以将像素和显著/背景区域的属性映射到度量空
- 我读Boosting Saliency CVPR 2012
工长山
文献阅读笔记BoostingSaliencyCVPR2012
原创手打,转载请注明出处。如有疑问或者错误,留言即可。讲稿ppt:http://download.csdn.net/detail/xuanwu_yan/48525582014.4.28更新:MatlabwithCmex实现方法已传至github,方便大家直接下载。传送门BoostingBottom-upandTop-downVisualFeaturesforSaliency这篇文章的作者是AliB
- Railroad is not a Train: Saliency as Pseudo-pixel Supervision for Weakly Supervised Semantic Segment
塔克拉玛干沙漠的卖水小孩
paper深度学习人工智能机器学习
RailroadisnotaTrain:SaliencyasPseudo-pixelSupervisionforWeaklySupervisedSemanticSegmentation摘要1.Introduction2.RelatedWork3.ProposedMethod3.1.Motivation3.2.ExplicitPseudo-pixelSupervision3.3.JointTrain
- 论文阅读:Gradient-Induced Co-Saliency Detection(ECCV2020)
淘尽黄沙后
论文笔记cnn人工智能神经网络
ECCV2020papergithub代码https://github.com/zzhanghub/gicd论文主要工作:针对协同显著性检测问题,提交检测精度。方法:首先,我们对一组图像在高维嵌入空间中抽象出其一致特征表示,一旦获得一致表示,我们提出了梯度诱导模块(GradientInducingModule,GIM)来模仿人类行为,将特定场景与一致描述进行比较,以反馈匹配信息。为了更好地评价Co
- 《Online Visual Place Recognition via Saliency Re-identification》论文阅读和实验
gy_Rick
本科毕业设计slam傅立叶分析c++cv
《OnlineVisualPlaceRecognitionviaSaliencyRe-identification》论文阅读和实验摘要相关工作原理1.突出特征检测2.突出特征匹配3.一致性检验实验1.突出特征检测2.闭环检测实验参考文献摘要作者认为现存的针对地点识别(visualplacerecognition)的一般方法——特征提取和匹配,均存在计算量较大的问题。人类在地点识别过程中,往往只会记
- siris 显著性排序网络代码解读(training过程)Inferring Attention Shift Ranks of Objects for Image Saliency
Cleo_Gao
卷积神经网络python神经网络计算机视觉
阅前说明前面已经出现的代码用…代替。本文仅解析train部分的代码(inference的部分会后续更新)。不对网络结构做过多解释,默认已经熟悉mrcnn的结构以及读过这篇论文了。另:inference部分已更新,见:siris显著性排序网络代码解读(inference过程)文章目录第一部分训练mrcnn网络obj_sal_seg_branch/train.pyobj_sal_seg_branch.
- 《A Model of Saliency-based Visual Attention for Rapid Scene Analysis》翻译和笔记
rosqin
论文相关
原文链接:AModelofSaliency-basedVisualAttentionforRapidSceneAnalysis以机翻为主,人工校对。摘要Avisualattentionsystem,inspiredbythebehaviorandtheneuronalarchitectureoftheearlyprimatevisualsystem,ispresented.Multiscaleim
- 【论文阅读002】Generating Natural Language Adversarial Examples through ProbabilityWeightedWord Saliency
Su-RE
论文深度学习
论文地址:GeneratingNaturalLanguageAdversarialExamplesthroughProbabilityWeightedWordSaliency-ACLAnthology,发表于第57届计算语言学协会年会论文集(2019年7月28日至8月2日)的第1085-1097页。目录论文主要工作已有的工作创新性具体方法问题对抗样本示例单词替换候选词选择替换策略效果评价论文主要工
- Shallow and Deep Convolutional Networks for Saliency Prediction
cv_family_z
ZJCVPR2016深度学习
CVPR2016ShallowandDeepConvolutionalNetworksforSaliencyPredictionCNN网络用于显著性预测开源代码:https://github.com/imatge-upc/saliency-2016-cvpr本文针对显著性预测问题,提出了两个CNN网络,一个小的模型,一个较深的模型。视觉显著性指智能算法通过模拟人的视觉特点,标注出图片中的显著区域(
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro